scholarly journals Probing the mechanism for hydrogel-based stasis induction in human pluripotent stem cells: is the chemical functionality of the hydrogel important?

2020 ◽  
Vol 11 (1) ◽  
pp. 232-240 ◽  
Author(s):  
M. Sponchioni ◽  
C. T. O'Brien ◽  
C. Borchers ◽  
E. Wang ◽  
M. N. Rivolta ◽  
...  

It is shown that hydroxyl functionality is required to induce stasis in human embryonic stem cell colonies immersed within wholly synthetic block copolymer worm gels with comparable storage moduli. Thus gel softness does not appear to be an essential parameter for stasis induction.

Biomedicines ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 453
Author(s):  
Young-Hyun Go ◽  
Jumee Kim ◽  
Ho-Chang Jeong ◽  
Seong-Min Kim ◽  
Yun-Jeong Kim ◽  
...  

Despite recent advances in clinical stem cell therapy applications based on human pluripotent stem cells (hPSCs), potential teratoma formation due to the presence of residual undifferentiated hPSCs remains a serious risk factor that challenges widespread clinical application. To overcome this risk, a variety of approaches have been developed to eliminate the remaining undifferentiated hPSCs via selective cell death induction. Our study seeks to identify natural flavonoids that are more potent than quercetin (QC), to selectively induce hPSC death. Upon screening in-house flavonoids, luteolin (LUT) is found to be more potent than QC to eliminate hPSCs in a p53-dependent manner, but not hPSC-derived smooth muscle cells or perivascular progenitor cells. Particularly, treating human embryonic stem cell (hESC)-derived cardiomyocytes with LUT efficiently eliminates the residual hESCs and only results in marginal effects on cardiomyocyte (CM) functions, as determined by calcium influx. Considering the technical limitations of isolating CMs due to a lack of exclusive surface markers at the end of differentiation, LUT treatment is a promising approach to minimize teratoma formation risk.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Dajeong Yoon ◽  
Dogeon Yoon ◽  
Heejoong Sim ◽  
Inseok Hwang ◽  
Ji-Seon Lee ◽  
...  

Fibroblasts synthesize and secrete dermal collagen, matrix proteins, growth factors, and cytokines. These characteristics of fibroblasts provide a potential way for fibroblast therapy to treat skin ulcers more effectively than conventional therapies such as cytokine therapy and negative pressure wound therapy. However, the obstacle to the commercialization of fibroblast therapy is the limited supply of cells with consistent quality. In this study, we tested whether human embryonic stem cell-derived mesenchymal stem cells (hESC-MSCs) could be differentiated into fibroblasts considering that they have characteristics of high differentiation rates, unlimited proliferation possibility from a single colony, and homogeneity. As a result, hESC-MSC-derived fibroblasts (hESC-MSC-Fbs) showed a significant increase in the expression of type I and III collagen, fibronectin, and fibroblast-specific protein-1 (FSP-1). Besides, vessel formation and wound healing were enhanced in hESC-MSC-Fb-treated skin tissues compared to PBS- or hESC-MSC-treated skin tissues, along with decreased IL-6 expression at 4 days after the formation of pressure ulcer wound in a mouse model. In view of the limited available cell sources for fibroblast therapy, hESC-MSC-Fbs show a promising potential as a commercial cell therapy source to treat skin ulcers.


2011 ◽  
Vol 15 (12) ◽  
pp. 43-44

Singapore Scientists Lead Human Embryonic Stem Cell Study to Advance Regenerative Medicine Research. Singapore Scientists Discover Genetic Link in Kawasaki Disease. Stem Cells Engineered to Kill Cancer.


2011 ◽  
Vol 22 (11) ◽  
pp. 1365-1377 ◽  
Author(s):  
Xiao Ying Bak ◽  
Hoang Lam Dang ◽  
Jingye Yang ◽  
Kai Ye ◽  
Esther X.W. Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document