scholarly journals Simulating protein–ligand binding with neural network potentials

2020 ◽  
Vol 11 (9) ◽  
pp. 2362-2368 ◽  
Author(s):  
Shae-Lynn J. Lahey ◽  
Christopher N. Rowley

Neural network potentials provide accurate predictions of the structures and stabilities of drug molecules. We present a method to use these new potentials in simulations of drugs binding to proteins using existing molecular simulation codes.

2019 ◽  
Author(s):  
Shae-Lynn Lahey ◽  
Christopher Rowley

Drug molecules adopt a range of conformations both in solution and in their protein-bound state. The strain and reduced flexibility of bound drugs can partially counter the intermolecular interactions that drive protein–ligand binding. To make accurate computational predictions of drug binding affinities, computational chemists have attempted to develop efficient empirical models of these interactions, although these methods are not always reliable. Machine learning has allowed the development of highly-accurate neural-network potentials (NNPs), which are capable of predicting the stability of molecular conformations with accuracy comparable to state-of-the-art quantum chemical calculations but at a billionth of the computational cost. Here, we demonstrate that these methods can be used to represent the intramolecular forces of protein-bound drugs within molecular dynamics simulations. These simulations are shown to be capable of predicting the protein–ligand binding pose and conformational component of the absolute Gibbs energy of binding for a set of drug molecules. Notably, the conformational energy for anti-cancer drug erlotinib binding to its target was found to considerably overestimated by a molecular mechanical model, while the NNP predicts a more moderate value. Although the ANI-1ccX NNP was not trained to describe ionic molecules, reasonable binding poses are predicted for charged ligands, although this method is not suitable for modeling the ligands in solution.


2019 ◽  
Author(s):  
Shae-Lynn Lahey ◽  
Christopher Rowley

Drug molecules adopt a range of conformations both in solution and in their protein-bound state. The strain and reduced flexibility of bound drugs can partially counter the intermolecular interactions that drive protein–ligand binding. To make accurate computational predictions of drug binding affinities, computational chemists have attempted to develop efficient empirical models of these interactions, although these methods are not always reliable. Machine learning has allowed the development of highly-accurate neural-network potentials (NNPs), which are capable of predicting the stability of molecular conformations with accuracy comparable to state-of-the-art quantum chemical calculations but at a billionth of the computational cost. Here, we demonstrate that these methods can be used to represent the intramolecular forces of protein-bound drugs within molecular dynamics simulations. These simulations are shown to be capable of predicting the protein–ligand binding pose and conformational component of the absolute Gibbs energy of binding for a set of drug molecules. Notably, the conformational energy for anti-cancer drug erlotinib binding to its target was found to considerably overestimated by a molecular mechanical model, while the NNP predicts a more moderate value. Although the ANI-1ccX NNP was not trained to describe ionic molecules, reasonable binding poses are predicted for charged ligands, although this method is not suitable for modeling the ligands in solution.


2019 ◽  
Author(s):  
Ryther Anderson ◽  
Achay Biong ◽  
Diego Gómez-Gualdrón

<div>Tailoring the structure and chemistry of metal-organic frameworks (MOFs) enables the manipulation of their adsorption properties to suit specific energy and environmental applications. As there are millions of possible MOFs (with tens of thousands already synthesized), molecular simulation, such as grand canonical Monte Carlo (GCMC), has frequently been used to rapidly evaluate the adsorption performance of a large set of MOFs. This allows subsequent experiments to focus only on a small subset of the most promising MOFs. In many instances, however, even molecular simulation becomes prohibitively time consuming, underscoring the need for alternative screening methods, such as machine learning, to precede molecular simulation efforts. In this study, as a proof of concept, we trained a neural network as the first example of a machine learning model capable of predicting full adsorption isotherms of different molecules not included in the training of the model. To achieve this, we trained our neural network only on alchemical species, represented only by their geometry and force field parameters, and used this neural network to predict the loadings of real adsorbates. We focused on predicting room temperature adsorption of small (one- and two-atom) molecules relevant to chemical separations. Namely, argon, krypton, xenon, methane, ethane, and nitrogen. However, we also observed surprisingly promising predictions for more complex molecules, whose properties are outside the range spanned by the alchemical adsorbates. Prediction accuracies suitable for large-scale screening were achieved using simple MOF (e.g. geometric properties and chemical moieties), and adsorbate (e.g. forcefield parameters and geometry) descriptors. Our results illustrate a new philosophy of training that opens the path towards development of machine learning models that can predict the adsorption loading of any new adsorbate at any new operating conditions in any new MOF.</div>


2020 ◽  
Vol 36 (10) ◽  
pp. 3077-3083
Author(s):  
Wentao Shi ◽  
Jeffrey M Lemoine ◽  
Abd-El-Monsif A Shawky ◽  
Manali Singha ◽  
Limeng Pu ◽  
...  

Abstract Motivation Fast and accurate classification of ligand-binding sites in proteins with respect to the class of binding molecules is invaluable not only to the automatic functional annotation of large datasets of protein structures but also to projects in protein evolution, protein engineering and drug development. Deep learning techniques, which have already been successfully applied to address challenging problems across various fields, are inherently suitable to classify ligand-binding pockets. Our goal is to demonstrate that off-the-shelf deep learning models can be employed with minimum development effort to recognize nucleotide- and heme-binding sites with a comparable accuracy to highly specialized, voxel-based methods. Results We developed BionoiNet, a new deep learning-based framework implementing a popular ResNet model for image classification. BionoiNet first transforms the molecular structures of ligand-binding sites to 2D Voronoi diagrams, which are then used as the input to a pretrained convolutional neural network classifier. The ResNet model generalizes well to unseen data achieving the accuracy of 85.6% for nucleotide- and 91.3% for heme-binding pockets. BionoiNet also computes significance scores of pocket atoms, called BionoiScores, to provide meaningful insights into their interactions with ligand molecules. BionoiNet is a lightweight alternative to computationally expensive 3D architectures. Availability and implementation BionoiNet is implemented in Python with the source code freely available at: https://github.com/CSBG-LSU/BionoiNet. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zechen Wang ◽  
Liangzhen Zheng ◽  
Yang Liu ◽  
Yuanyuan Qu ◽  
Yong-Qiang Li ◽  
...  

One key task in virtual screening is to accurately predict the binding affinity (△G) of protein-ligand complexes. Recently, deep learning (DL) has significantly increased the predicting accuracy of scoring functions due to the extraordinary ability of DL to extract useful features from raw data. Nevertheless, more efforts still need to be paid in many aspects, for the aim of increasing prediction accuracy and decreasing computational cost. In this study, we proposed a simple scoring function (called OnionNet-2) based on convolutional neural network to predict △G. The protein-ligand interactions are characterized by the number of contacts between protein residues and ligand atoms in multiple distance shells. Compared to published models, the efficacy of OnionNet-2 is demonstrated to be the best for two widely used datasets CASF-2016 and CASF-2013 benchmarks. The OnionNet-2 model was further verified by non-experimental decoy structures from docking program and the CSAR NRC-HiQ data set (a high-quality data set provided by CSAR), which showed great success. Thus, our study provides a simple but efficient scoring function for predicting protein-ligand binding free energy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249404
Author(s):  
Jeongtae Son ◽  
Dongsup Kim

Prediction of protein-ligand interactions is a critical step during the initial phase of drug discovery. We propose a novel deep-learning-based prediction model based on a graph convolutional neural network, named GraphBAR, for protein-ligand binding affinity. Graph convolutional neural networks reduce the computational time and resources that are normally required by the traditional convolutional neural network models. In this technique, the structure of a protein-ligand complex is represented as a graph of multiple adjacency matrices whose entries are affected by distances, and a feature matrix that describes the molecular properties of the atoms. We evaluated the predictive power of GraphBAR for protein-ligand binding affinities by using PDBbind datasets and proved the efficiency of the graph convolution. Given the computational efficiency of graph convolutional neural networks, we also performed data augmentation to improve the model performance. We found that data augmentation with docking simulation data could improve the prediction accuracy although the improvement seems not to be significant. The high prediction performance and speed of GraphBAR suggest that such networks can serve as valuable tools in drug discovery.


2019 ◽  
Author(s):  
Rainier Barrett ◽  
Maghesree Chakraborty ◽  
Dilnoza Amirkulova ◽  
Heta Gandhi ◽  
Andrew White

<div> <div> <div> <p>As interest grows in applying machine learning force-fields and methods to molecular simulation, there is a need for state-of-the-art inference methods to use trained models within efficient molecular simulation engines. We have designed and implemented software that enables integration of a scalable GPU-accelerated molecular mechanics engine, HOOMD-blue, with the machine learning (ML) TensorFlow package. TensorFlow is a GPU-accelerated, scalable, graph-based tensor computation model building package that has been the implementation of many recent innovations in deep learning and other ML tasks. TensorFlow models are constructed in Python and can be visualized or debugged using the rich set of tools implemented in the TensorFlow package. In this article, we present four major examples of tasks this software can accomplish which would normally require multiple different tools: (1) we train a neural network to reproduce a force field of a Lennard-Jones simulation; (2) we perform online force matching of methanol; (3) we compute the maximum entropy bias of a Lennard-Jones collective variable; (4) we calculate the scattering profile of an ongoing TIP4P water molecular dynamics simulation. This work should accelerate both the design of new neural network based models in computational chemistry research and reproducible model specification by leveraging a widely-used ML package.</p></div></div></div>


2020 ◽  
Vol 16 (4) ◽  
pp. 407-419
Author(s):  
Aytun Onay ◽  
Melih Onay

Background: Virtual screening of candidate drug molecules using machine learning techniques plays a key role in pharmaceutical industry to design and discovery of new drugs. Computational classification methods can determine drug types according to the disease groups and distinguish approved drugs from withdrawn ones. Introduction: Classification models developed in this study can be used as a simple filter in drug modelling to eliminate potentially inappropriate molecules in the early stages. In this work, we developed a Drug Decision Support System (DDSS) to classify each drug candidate molecule as potentially drug or non-drug and to predict its disease group. Methods: Molecular descriptors were identified for the determination of a number of rules in drug molecules. They were derived using ADRIANA.Code program and Lipinski's rule of five. We used Artificial Neural Network (ANN) to classify drug molecules correctly according to the types of diseases. Closed frequent molecular structures in the form of subgraph fragments were also obtained with Gaston algorithm included in ParMol Package to find common molecular fragments for withdrawn drugs. Results: We observed that TPSA, XlogP Natoms, HDon_O and TPSA are the most distinctive features in the pool of the molecular descriptors and evaluated the performances of classifiers on all datasets and found that classification accuracies are very high on all the datasets. Neural network models achieved 84.6% and 83.3% accuracies on test sets including cardiac therapy, anti-epileptics and anti-parkinson drugs with approved and withdrawn drugs for drug classification problems. Conclusion: The experimental evaluation shows that the system is promising at determination of potential drug molecules to classify drug molecules correctly according to the types of diseases.


Sign in / Sign up

Export Citation Format

Share Document