scholarly journals Nanocomposite of nickel oxide nanoparticles and polyethylene oxide as printable hole transport layer for organic solar cells

2019 ◽  
Vol 3 (6) ◽  
pp. 1418-1426 ◽  
Author(s):  
Marta Ruscello ◽  
Tanmoy Sarkar ◽  
Artem Levitsky ◽  
Giovanni Maria Matrone ◽  
Nikolaos Droseros ◽  
...  

Low temperature NiOx is achieved using PEO as sacrificial ink additive to make hole transport layer for solar cells.

2017 ◽  
Vol 5 (14) ◽  
pp. 6597-6605 ◽  
Author(s):  
Zonghao Liu ◽  
Aili Zhu ◽  
Fensha Cai ◽  
LeiMing Tao ◽  
Yinhua Zhou ◽  
...  

Here, a low-temperature solution-processed nickel oxide (NiOx) thin film was first employed as a hole transport layer in both inverted (p-i-n) planar and regular (n-i-p) mesoscopic organic–inorganic hybrid perovskite solar cells (PVSCs).


Solar Energy ◽  
2019 ◽  
Vol 181 ◽  
pp. 243-250 ◽  
Author(s):  
Ryuji Kaneko ◽  
Towhid H. Chowdhury ◽  
Guohua Wu ◽  
Md. Emrul Kayesh ◽  
Said Kazaoui ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Nguyen Nang Dinh ◽  
Do Ngoc Chung ◽  
Tran Thi Thao ◽  
David Hui

Polymeric nanocomposite films from PEDOT and MEH-PPV embedded with surface modified TiO2nanoparticles for the hole transport layer and emission layer were prepared, respectively, for organic emitting diodes (OLEDs). The composite of MEH-PPV+nc-TiO2was used for organic solar cells (OSCs). The characterization of these nanocomposites and devices showed that electrical (I-Vcharacteristics) and spectroscopic (photoluminescent) properties of conjugate polymers were enhanced by the incorporation of nc-TiO2in the polymers. The organic light emitting diodes made from the nanocomposite films would exhibit a larger photonic efficiency and a longer lasting life. For the organic solar cells made from MEH-PPV+nc-TiO2composite, a fill factor reached a value of about 0.34. Under illumination by light with a power density of 50 mW/cm2, the photoelectrical conversion efficiency was about 0.15% corresponding to an open circuit voltageVoc= 0.126 V and a shortcut circuit current densityJsc= 1.18 mA/cm2.


Sign in / Sign up

Export Citation Format

Share Document