Intermediate wetting state at nano/microstructured surfaces

Soft Matter ◽  
2020 ◽  
Vol 16 (14) ◽  
pp. 3514-3521 ◽  
Author(s):  
Gyoko Nagayama ◽  
Dejian Zhang

A general partial wetting model to describe an intermediate wetting state is proposed in this study to explain the deviations between the experimental results and classical theoretical wetting models for hydrophobic surfaces.

Author(s):  
Y. Y. Yan

A micro/meso scale modelling of two-phase droplets move on hydrophilic/hydrophobic surfaces with micro roughness is reported. The physical model is basically of two-phase flow interacting with the surfaces of different hydrophobicity or wettability. Numerical modelling based on the lattice Boltzmann method (LBM) is developed and applied to the computational calculation and simulation. The LBM modelling deals with surface tension dominated behaviour of water droplets in air spreading on a hydrophilic surface with hydrophobic strips of different sizes and contact angles under different physical and interfacial conditions, and aims to find quantitative data and physical conditions of the biomimetic approaches. The current LBM can be applied to simulate two-phase fluids with large density ratio (up to 1000), and meanwhile deal with interactions between a fluid-fluid interface and a partial wetting wall. In the simulation, the interactions between the fluid-fluid interface and the partial wetting wall with different hydrophobic strips such as single strip, intersecting stripes, and alternating & parallel stripes, of different sizes and contact angles are considered and tested numerically; the phenomena of droplets spreading and breaking up, and the effect of hydrophobic strips on the surface wettability or self-cleaning characteristics are simulated, reported and discussed.


Nanoscale ◽  
2019 ◽  
Vol 11 (44) ◽  
pp. 21458-21470 ◽  
Author(s):  
Sara Marchio ◽  
Simone Meloni ◽  
Alberto Giacomello ◽  
Carlo Massimo Casciola

Here we investigate the wetting and dewetting of textured hydrophobic surfaces including inertia effects, which have been neglected in previous studies but are necessary to match experimental results.


1991 ◽  
Vol 46 (2) ◽  
pp. B59-B68 ◽  
Author(s):  
M. Crine ◽  
M. Schlitz ◽  
L. Vandevenne

2010 ◽  
Vol 303-304 ◽  
pp. 139-145 ◽  
Author(s):  
J. Radulovic ◽  
Khellil Sefiane ◽  
Martin E.R. Shanahan

The excellent spreading and wetting behaviour of superspreader solutions has been known and extensively studied over recent years. However, explanations for spreading dynamics and accompanying mathematical models have not yet proved completely successful. Many attempts have been made to quantify the spreading exponents, but none of the models so far was able successfully to describe the whole wetting process of trisiloxane solutions, especially on hydrophobic surfaces. We have investigated the partial wetting of Silwet L-77® superspreader solutions of high concentrations (well above CMC) on polymer coated substrates of varying hydrophobicity. Results obtained can be explained in terms of the Marangoni effect as the major driving force for trisiloxane enhanced spreading. A simple theory, which involves surface tension gradients governing the spreading process, was developed in order to explain the specific evolution of the drop radius and consequent decrease in the contact angle. The proposed model was found to be in excellent agreement with the experimental results. Determined equation coefficients were shown to be dependent on both surfactant concentration and the hydrophobicity of the substrate.


1988 ◽  
Vol 102 ◽  
pp. 357-360
Author(s):  
J.C. Gauthier ◽  
J.P. Geindre ◽  
P. Monier ◽  
C. Chenais-Popovics ◽  
N. Tragin ◽  
...  

AbstractIn order to achieve a nickel-like X ray laser scheme we need a tool to determine the parameters which characterise the high-Z plasma. The aim of this work is to study gold laser plasmas and to compare experimental results to a collisional-radiative model which describes nickel-like ions. The electronic temperature and density are measured by the emission of an aluminium tracer. They are compared to the predictions of the nickel-like model for pure gold. The results show that the density and temperature can be estimated in a pure gold plasma.


Author(s):  
Y. Harada ◽  
T. Goto ◽  
H. Koike ◽  
T. Someya

Since phase contrasts of STEM images, that is, Fresnel diffraction fringes or lattice images, manifest themselves in field emission scanning microscopy, the mechanism for image formation in the STEM mode has been investigated and compared with that in CTEM mode, resulting in the theory of reciprocity. It reveals that contrast in STEM images exhibits the same properties as contrast in CTEM images. However, it appears that the validity of the reciprocity theory, especially on the details of phase contrast, has not yet been fully proven by the experiments. In this work, we shall investigate the phase contrast images obtained in both the STEM and CTEM modes of a field emission microscope (100kV), and evaluate the validity of the reciprocity theory by comparing the experimental results.


Author(s):  
A. Ourmazd ◽  
G.R. Booker ◽  
C.J. Humphreys

A (111) phosphorus-doped Si specimen, thinned to give a TEM foil of thickness ∼ 150nm, contained a dislocation network lying on the (111) plane. The dislocation lines were along the three <211> directions and their total Burgers vectors,ḇt, were of the type , each dislocation being of edge character. TEM examination under proper weak-beam conditions seemed initially to show the standard contrast behaviour for such dislocations, indicating some dislocation segments were undissociated (contrast A), while other segments were dissociated to give two Shockley partials separated by approximately 6nm (contrast B) . A more detailed examination, however, revealed that some segments exhibited a third and anomalous contrast behaviour (contrast C), interpreted here as being due to a new dissociation not previously reported. Experimental results obtained for a dislocation along [211] with for the six <220> type reflections using (g,5g) weak-beam conditions are summarised in the table below, together with the relevant values.


Author(s):  
Scott Lordi

Vicinal Si (001) surfaces are interesting because they are good substrates for the growth of III-V semiconductors. Spots in RHEED patterns from vicinal surfaces are split due to scattering from ordered step arrays and this splitting can be used to determine the misorientation angle, using kinematic arguments. Kinematic theory is generally regarded to be inadequate for the calculation of RHEED intensities; however, only a few dynamical RHEED simulations have been attempted for vicinal surfaces. The multislice formulation of Cowley and Moodie with a recently developed edge patching method was used to calculate RHEED patterns from vicinal Si (001) surfaces. The calculated patterns are qualitatively similar to published experimental results and the positions of the split spots quantitatively agree with kinematic calculations.RHEED patterns were calculated for unreconstructed (bulk terminated) Si (001) surfaces misoriented towards [110] ,with an energy of 15 keV, at an incident angle of 36.63 mrad ([004] bragg condition), and a beam azimuth of [110] (perpendicular to the step edges) and the incident beam pointed down the step staircase.


Sign in / Sign up

Export Citation Format

Share Document