Enhanced structural stability and overall conductivity of Li-rich layered oxide materials achieved by a dual electron/lithium-conducting coating strategy for high-performance lithium-ion batteries

2019 ◽  
Vol 7 (41) ◽  
pp. 23964-23972 ◽  
Author(s):  
Dan Gao ◽  
Zhisen Zeng ◽  
Hongwei Mi ◽  
Lingna Sun ◽  
Xiangzhong Ren ◽  
...  

A dual coating of LATP and CNTs accelerates the transportation of Li+ and electrons, resulting in improved rate capability.

2021 ◽  
Vol 9 (16) ◽  
pp. 10508-10508
Author(s):  
Dan Gao ◽  
Zhisen Zeng ◽  
Hongwei Mi ◽  
Lingna Sun ◽  
Xiangzhong Ren ◽  
...  

Correction for ‘Enhanced structural stability and overall conductivity of Li-rich layered oxide materials achieved by a dual electron/lithium-conducting coating strategy for high-performance lithium-ion batteries’ by Dan Gao et al., J. Mater. Chem. A, 2019, 7, 23964–23972, DOI: 10.1039/C9TA04551A.


2021 ◽  
pp. 2010095
Author(s):  
Chul‐Ho Jung ◽  
Do‐Hoon Kim ◽  
Donggun Eum ◽  
Kyeong‐Ho Kim ◽  
Jonghyun Choi ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (77) ◽  
pp. 63012-63016 ◽  
Author(s):  
Yourong Wang ◽  
Wei Zhou ◽  
Liping Zhang ◽  
Guangsen Song ◽  
Siqing Cheng

A SiO2@NiO core–shell electrode exhibits almost 100% coulombic efficiency, excellent cycling stability and rate capability after the first few cycles.


2015 ◽  
Vol 3 (7) ◽  
pp. 3962-3967 ◽  
Author(s):  
Xiaolei Wang ◽  
Ge Li ◽  
Fathy M. Hassan ◽  
Matthew Li ◽  
Kun Feng ◽  
...  

High-performance robust CNT–graphene–Si composites are designed as anode materials with enhanced rate capability and excellent cycling stability for lithium-ion batteries. Such an improvement is mainly attributed to the robust sponge-like architecture, which holds great promise in future practical applications.


2013 ◽  
Vol 1540 ◽  
Author(s):  
Chia-Yi Lin ◽  
Chien-Te Hsieh ◽  
Ruey-Shin Juang

ABSTRACTAn efficient microwave-assisted polyol (MP) approach is report to prepare SnO2/graphene hybrid as an anode material for lithium ion batteries. The key factor to this MP method is to start with uniform graphene oxide (GO) suspension, in which a large amount of surface oxygenate groups ensures homogeneous distribution of the SnO2 nanoparticles onto the GO sheets under the microwave irradiation. The period for the microwave heating only takes 10 min. The obtained SnO2/graphene hybrid anode possesses a reversible capacity of 967 mAh g-1 at 0.1 C and a high Coulombic efficiency of 80.5% at the first cycle. The cycling performance and the rate capability of the hybrid anode are enhanced in comparison with that of the bare graphene anode. This improvement of electrochemical performance can be attributed to the formation of a 3-dimensional framework. Accordingly, this study provides an economical MP route for the fabrication of SnO2/graphene hybrid as an anode material for high-performance Li-ion batteries.


2019 ◽  
Vol 43 (3) ◽  
pp. 1238-1246 ◽  
Author(s):  
Duo Zhang ◽  
Chaoqi Bi ◽  
Qingliu Wu ◽  
Guangya Hou ◽  
Guoqu Zheng ◽  
...  

It is a challenge to commercialize tin dioxide-based anodes for lithium-ion batteries due to their low rate capability and poor cycling performance of the electrodes.


2015 ◽  
Vol 3 (26) ◽  
pp. 13648-13652 ◽  
Author(s):  
Naiteng Wu ◽  
Hao Wu ◽  
Wei Yuan ◽  
Shengjie Liu ◽  
Jinyu Liao ◽  
...  

One-dimensional LiNi0.8Co0.15Al0.05O2 microrods are synthesized through chemical lithiation of mixed Ni, Co, and Al oxalate microrod. The rod-like morphology together with structural stability endows it with superior rate capability and cycle performance for highly reversible lithium storage.


Sign in / Sign up

Export Citation Format

Share Document