Temperature-induced switchable interfacial interactions on slippery surfaces for controllable liquid manipulation

2019 ◽  
Vol 7 (31) ◽  
pp. 18510-18518 ◽  
Author(s):  
Zubin Wang ◽  
Quan Xu ◽  
Lili Wang ◽  
Liping Heng ◽  
Lei Jiang

The interfacial friction forces and adhesion forces are directly detected and controllable liquid sliding is achieved on a temperature-responsive slippery surface.

NANO ◽  
2015 ◽  
Vol 10 (03) ◽  
pp. 1550038 ◽  
Author(s):  
Yan Jiang ◽  
Lili Yue ◽  
Boshen Yan ◽  
Xi Liu ◽  
Xiaofei Yang ◽  
...  

We investigated friction on an n-type silicon surface using an atomic force microscope when a bias voltage was applied to the sample. Friction forces on the same track line were measured before and after the bias voltages were applied and it was found that the friction forces in n-type silicon can be tuned reversibly with the bias voltage. The dependence of adhesion forces between the silicon nitride tip and Si sample on the bias voltages approximately follows a parabolic law due to electrostatic force, which results in a significant increase in the friction force at an applied electric field.


2020 ◽  
Vol 989 ◽  
pp. 816-820
Author(s):  
Roman Sergeevich Khmyrov ◽  
R.R. Ableyeva ◽  
Tatiana Vasilievna Tarasova ◽  
A.V. Gusarov

Mass transfer in the laser-interaction zone at selective laser melting influences the quality of the obtained material. Powder particles displacement during the formation of the single bead is experimentally studied. The so-called denudated zone was visualized by metallography. It was determined that increasing the powder particle size leads to widening the denudated zone. This can signify that the adhesion forces between powder particles prevail over the friction forces.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1253-1254
Author(s):  
Charles M. Lieber ◽  
Dmitri Vezenov ◽  
Aleksandr Noy ◽  
Charles Sanders

Chemical force microscopy (CFM) has been used to measure adhesion and friction forces between probe tips and substrates covalently modified with self-assembled monolayers (SAMs) that terminate in distinct functional groups. Probe tips have been modified with SAMs using a procedure that involves coating commercial Si3N4 cantilever/tip assemblies with a thin layer of polycrystalline Au followed by immersion in a solution of a functionalized thiol. This methodology provides a reproducible means for endowing the probe with different chemical functional groups.A force microscope has been used to characterize the adhesive interactions between probe tips and substrates that have been modified with SAMs which terminate with COOH and CH3 functional groups in ethanol water solvent. Force versus distance curves recorded under ethanol show that the interaction between COOH/COOH > CH3/CH3 > COOH/CH3. The measured adhesive forces were found to agree well with predictions of the Johnson, Kendall, and Roberts (JKR) theory of adhesive contact, and thus show that the observed adhesion forces correlate with the surface free energy


Author(s):  
Noureddine Tayebi ◽  
Andreas A. Polycarpou

It has been experimentally shown that surface texturing (roughening) decreases the effect of intermolecular adhesion forces that are significant in MEMS applications. These forces can hinder normal operation of sensors and actuators as well as micro-engines where they might increase friction, which could be catastrophic. In this paper, a model that predicts the effects of roughness, asymmetry, and flatness on the adhesion, contact, and friction forces in MEMS interfaces is presented. The three key parameters used to characterize the roughness the asymmetry and the flatness of a surface topography are the root-mean-square roughness (RMS), skewness and kurtosis, respectively. It is predicted that surfaces with high RMS, high kurtosis and positive skewness exhibit lower adhesion and static friction coefficient, even at extremely low external normal forces.


2008 ◽  
Vol 2 (1) ◽  
pp. 283-294 ◽  
Author(s):  
Akimaro KAWAHARA ◽  
Michio SADATOMI ◽  
Hiroshi SHIRAI

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 349
Author(s):  
Mingjie Li ◽  
Yulong Chen ◽  
Wenxin Luo ◽  
Xing Cheng

Nanoimprint lithography (NIL) is a useful technique for the fabrication of nano/micro-structured materials. This article reviews NIL in the field of demolding processes and is divided into four parts. The first part introduces the NIL technologies for pattern replication with polymer resists (e.g., thermal and UV-NIL). The second part reviews the process simulation during resist filling and demolding. The third and fourth parts discuss in detail the difficulties in demolding, particularly interfacial forces between mold (template) and resist, during NIL which limit its capability for practical commercial applications. The origins of large demolding forces (adhesion and friction forces), such as differences in the thermal expansion coefficients (CTEs) between the template and the imprinted resist, or volumetric shrinkage of the UV-curable polymer during curing, are also illustrated accordingly. The plausible solutions for easing interfacial interactions and optimizing demolding procedures, including exploring new resist materials, employing imprint mold surface modifications (e.g., ALD-assisted conformal layer covering imprint mold), and finetuning NIL process conditions, are presented. These approaches effectively reduce the interfacial demolding forces and thus lead to a lower defect rate of pattern transfer. The objective of this review is to provide insights to alleviate difficulties in demolding and to meet the stringent requirements regarding defect control for industrial manufacturing while at the same time maximizing the throughput of the nanoimprint technique.


Sign in / Sign up

Export Citation Format

Share Document