A facile solvothermal polymerization approach to thermoplastic polymer-based nanocomposites as alternative anodes for high-performance lithium-ion batteries

2019 ◽  
Vol 7 (40) ◽  
pp. 23019-23027 ◽  
Author(s):  
Zongfeng Sha ◽  
Shengqiang Qiu ◽  
Qing Zhang ◽  
Zhiyong Huang ◽  
Xun Cui ◽  
...  

A solvothermal polymerization approach to graphene/poly(methyl methacrylate) thermoplastic nanocomposites as low-cost alternative anode materials with superior lithium storage capability.

2020 ◽  
Vol 4 (9) ◽  
pp. 4780-4788 ◽  
Author(s):  
Qiang Ma ◽  
Jiakang Qu ◽  
Xiang Chen ◽  
Zhuqing Zhao ◽  
Yan Zhao ◽  
...  

Low-cost feedstocks and rationally designed structures are the keys to determining the lithium-storage performance and practical applications of Si-based anodes for lithium-ion batteries (LIBs).


Nanoscale ◽  
2021 ◽  
Author(s):  
Lei Hu ◽  
Qiushi Wang ◽  
Xiandong Zhu ◽  
Tao Meng ◽  
Binbin Huang ◽  
...  

Iron oxide nanoparticles embedded in S,N dual-doped carbon through pyrolysis of novel Fe4-based metal–organic clusters are fabricated and utilized as potential anode materials for lithium ion batteries in both half- and full-cells.


2019 ◽  
Vol 7 (8) ◽  
pp. 3874-3881 ◽  
Author(s):  
Min Cui ◽  
Lin Wang ◽  
Xianwei Guo ◽  
Errui Wang ◽  
Yubo Yang ◽  
...  

A mass-produced and low-cost hierarchical mesoporous/macroporous silicon-based composite material with an ample porous structure and dual carbon protective layers has been rationally designed and constructed. The Si/SiO2@C composite anode materials for LIBs show enhanced electrochemical properties.


2015 ◽  
Vol 39 (11) ◽  
pp. 8416-8423 ◽  
Author(s):  
Xiaoyu Wu ◽  
Songmei Li ◽  
Bo Wang ◽  
Jianhua Liu ◽  
Mei Yu

Various micro/nano-structured MnCo2O4 with excellent lithium storage performance were synthesized controllably.


RSC Advances ◽  
2015 ◽  
Vol 5 (72) ◽  
pp. 58514-58521 ◽  
Author(s):  
Dongsheng Guan ◽  
Jianyang Li ◽  
Xianfeng Gao ◽  
Chris Yuan

Composite of ultrathin SnS2 and SnO2 nanoflakes with conducting multiwalled carbon nanotube matrix as superior anode materials for lithium-ion batteries.


RSC Advances ◽  
2016 ◽  
Vol 6 (102) ◽  
pp. 99695-99703 ◽  
Author(s):  
Xiaoying Chen ◽  
Li Liu ◽  
Lingguang Yi ◽  
Guoxiong Guo ◽  
Min Li ◽  
...  

Ti3+-Doped anatase TiO2@C composite spheres as the anode materials for lithium ion batteries.


RSC Advances ◽  
2014 ◽  
Vol 4 (52) ◽  
pp. 27488-27492 ◽  
Author(s):  
Xiayin Yao ◽  
Junhua Kong ◽  
Xiaosheng Tang ◽  
Dan Zhou ◽  
Chenyang Zhao ◽  
...  

Porous CoFe2O4 nanosheets are prepared via a low-cost and scalable process and are shown to be high-performance anode materials for lithium-ion batteries.


2021 ◽  
Author(s):  
Yaqin Zhu ◽  
Jiachang Zhao ◽  
Lanjie Li ◽  
Jingli Xu ◽  
Xinxin Zhao ◽  
...  

The emerging Bi2Se3-based anode materials arouse great interest for lithium storage because of its high theoretical capacity. Although quite attractive, Bi2Se3 still faces with the problem of large volume expansion...


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 24
Author(s):  
Ji Yan ◽  
Xin-Bo Chang ◽  
Xiao-Kai Ma ◽  
Heng Wang ◽  
Yong Zhang ◽  
...  

Phosphorization of metal oxides/hydoxides to promote electronic conductivity as a promising strategy has attracted enormous attention for improving the electrochemical properties of anode material in lithium ion batteries. For this article, selective phosphorization from NiCo2O4 to NiO/Ni2Co4P3 microspheres was realized as an efficient route to enhance the electrochemical lithium storage properties of bimetal Ni-Co based anode materials. The results show that varying phosphorizaed reagent amount can significantly affect the transformation of crystalline structure from NiCo2O4 to intermediate NiO, hybrid NiO/Ni2Co4P3, and, finally, to Ni2Co4P3, during which alterated sphere morphology, shifted surface valance, and enhanced lithium-ion storage behavior are detected. The optimized phosphorization with 1:3 reagent mass ratio can maintain the spherical architecture, hold hybrid crystal structure, and improve the reversibly electrochemical lithium-ion storage properties. A specific capacity of 415 mAh g−1 is achieved at 100 mA g−1 specific current and maintains at 106 mAh g−1 when the specific current increases to 5000 mA g−1. Even after 200 cycles at 500 mA g−1, the optimized electrode still delivers 224 mAh g−1 of specific capacity, exhibiting desirable cycling stability. We believe that understanding of such selective phosphorization can further evoke a particular research enthusiasm for anode materials in lithium ion battery with high performances.


2019 ◽  
Vol 7 (27) ◽  
pp. 16541-16552 ◽  
Author(s):  
Xuefang Xie ◽  
Yang Hu ◽  
Guozhao Fang ◽  
Xinxin Cao ◽  
Bo Yin ◽  
...  

In situ formed hierarchical FeS nanosheets supported by a TiO2/C fibrous backbone exhibit higher rate capability and cycling stability as anode materials for lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document