scholarly journals CCXLII.—The relation between the crystal structure and the chemical composition, constitution, and configuration of organic substances

1910 ◽  
Vol 97 (0) ◽  
pp. 2308-2388 ◽  
Author(s):  
William Barlow ◽  
William Jackson Pope
1993 ◽  
Vol 329 ◽  
Author(s):  
Vivien D.

AbstractIn this paper the relationships between the crystal structure, chemical composition and electronic structure of laser materials, and their optical properties are discussed. A brief description is given of the different laser activators and of the influence of the matrix on laser characteristics in terms of crystal field strength, symmetry, covalency and phonon frequencies. The last part of the paper lays emphasis on the means to optimize the matrix-activator properties such as control of the oxidation state and site occupancy of the activator and influence of its concentration.


Author(s):  
Elena Sokolova ◽  
Maxwell C. Day ◽  
Frank C. Hawthorne ◽  
Atali A. Agakhanov ◽  
Fernando Cámara ◽  
...  

ABSTRACT The crystal structure of perraultite from the Oktyabr'skii massif, Donetsk region, Ukraine (bafertisite group, seidozerite supergroup), ideally NaBaMn4Ti2(Si2O7)2O2(OH)2F, Z = 4, was refined in space group C to R1 = 2.08% on the basis of 4839 unique reflections [Fo > 4σFo]; a = 10.741(6), b = 13.841(8), c = 11.079(6) Å, α = 108.174(6), β = 99.186(6), γ = 89.99(1)°, V = 1542.7(2.7) Å3. Refinement was done using data from a crystal with three twin domains which was part of a grain used for electron probe microanalysis. In the perraultite structure [structure type B1(BG), B – basic, BG – bafertisite group], there is one type of TS (Titanium-Silicate) block and one type of I (Intermediate) block; they alternate along c. The TS block consists of HOH sheets (H – heteropolyhedral, O – octahedral). In the O sheet, the ideal composition of the five [6]MO sites is Mn4 apfu. There is no order of Mn and Fe2+ in the O sheet. The MH octahedra and Si2O7 groups constitute the H sheet. The ideal composition of the two [6]MH sites is Ti2 apfu. The TS blocks link via common vertices of MH octahedra. The I block contains AP(1,2) and BP(1,2) cation sites. The AP(1) site is occupied by Ba and the AP(2) site by K > Ba; the ideal composition of the AP(1,2) sites is Ba apfu. The BP(1) and BP(2) sites are each occupied by Na > Ca; the ideal composition of the BP(1,2) sites is Na apfu. We compare perraultite and surkhobite based on the work of Sokolova et al. (2020) on the holotype sample of surkhobite: space group C , R1 = 2.85 %, a = 10.728(6), b = 13.845(8), c = 11.072(6) Å, α = 108.185(6), β = 99.219(5), γ = 90.001(8)°, V = 1540.0(2.5) Å3; new EPMA data. We show that (1) perraultite and surkhobite have identical chemical composition and ideal formula NaBaMn4Ti2(Si2O7)2O2(OH)2F; (2) perraultite and surkhobite are isostructural, with no order of Na and Ca at the BP(1,2) sites. Perraultite was described in 1991 and has precedence over surkhobite, which was redefined as “a Ca-ordered analogue of perraultite” in 2008. Surkhobite is not a valid mineral species and its discreditation was approved by CNMNC IMA (IMA 20-A).


2021 ◽  
Vol 36 ◽  
pp. 06026
Author(s):  
Elena Panina ◽  
Alexey Ivanov ◽  
Dmitry Petrov

It was found that the inclusion of water enriched with molecular hydrogen into the diet of a long-tailed chinchilla changed the fur quality indicators. In animals of the experimental group, the guard and downy hairs were thinner than in the control group. The length of downy hair in the experimental group was higher, the number of hairs in the follicle in the chinchillas of the experimental group was greater than in the control group, besides, the hair was stronger and softer. The animals of the experimental group showed less tendency to gnaw out fur. When considering the data on the chemical composition, it was found that in the dry matter of the hair of the animals of the experimental group, there were less organic substances, and there were more minerals in comparison with the animals of the control group.


2007 ◽  
Vol 92 (8-9) ◽  
pp. 1395-1400 ◽  
Author(s):  
M. F. Brigatti ◽  
A. Mottana ◽  
D. Malferrari ◽  
G. Cibin

2019 ◽  
Vol 1 (1) ◽  
pp. 44-50
Author(s):  
Nella N. Aghajanyan ◽  
Seda K. Dolukhanyan ◽  
Ofelia P. Ter-Galstyan ◽  
Nune L. Mnatsakanyan

Sign in / Sign up

Export Citation Format

Share Document