Multi-dimensional architecture of Ag/α-Ag2WO4 crystals: insights into microstructural, morphological, and photoluminescence properties

CrystEngComm ◽  
2020 ◽  
Vol 22 (45) ◽  
pp. 7903-7917
Author(s):  
Lílian Cruz ◽  
Mayara M. Teixeira ◽  
Vinícius Teodoro ◽  
Natalia Jacomaci ◽  
Letícia O. Laier ◽  
...  

Varying the concentration of ethylenediamine resulted in hollow or solid Ag/α-Ag2WO4 microflowers that emit light in the red region or in the blue region, respectively.

2018 ◽  
Vol 6 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Yong Liu ◽  
Guojun Gao ◽  
Lin Huang ◽  
Yiwen Zhu ◽  
Xuejie Zhang ◽  
...  

BaTiF6:Mn4+: a fluoride-based red phosphor with a sharp emission line and broad absorption in the blue region used for warm WLEDs.


2010 ◽  
Vol 1247 ◽  
Author(s):  
Rocío Calderón-Villajos ◽  
Carlos Zaldo ◽  
Concepción Cascales

AbstractControlled reaction conditions in simple, template-free hydrothermal processes yield Tm-Lu2O3 and Tm-GdVO4 nanocrystals with well-defined specific morphologies and sizes. In both oxide families, nanocrystals prepared at pH 7 reaction media exhibit photoluminescence in ∼1.95 μm similar to bulk single crystals. For the lowest Tm3+ concentration (0.2 % mol) in GdVO4 measured 3H4 and 3F4 fluorescence lifetimes τ are very near to τrad.


2013 ◽  
Vol 27 (10) ◽  
pp. 1095-1098
Author(s):  
Ya-Jun LU ◽  
Hong-Zhi WANG ◽  
Yao-Gang LI ◽  
Qing-Hong ZHANG

2020 ◽  
Vol 5 (3) ◽  
pp. 236-251
Author(s):  
Eshwara I. Naik ◽  
Halehatty S.B. Naik ◽  
Ranganaik Viswanath

Background: Various interesting consequences are reported on structural, optical, and photoluminescence properties of Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles synthesized by sol-gel auto-combustion route. Objective: This study aimed to examine the effects of Sm3+-doping on structural and photoluminescence properties of ZnO nanoparticles. Methods: Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles were synthesized by sol-gel auto combustion method. Results: XRD patterns confirmed the Sm3+ ion substitution through the undisturbed wurtzite structure of ZnO. The crystallite size was decreased from 24.33 to 18.46 nm with Sm3+ doping. The hexagonal and spherical morphology of nanoparticles was confirmed by TEM analysis. UV-visible studies showed that Sm3+ ion doping improved the visible light absorption capacity of Sm3+ iondoped ZnO nanoparticles. PL spectra of Sm3+ ion-doped ZnO nanoparticles showed an orange-red emission peak corresponding to 4G5/2→6HJ (J=7/2, 9/2 and 11/2) transition of Sm3+ ion. Sm3+ ion-induced PL was proposed with a substantial increase in PL intensity with a blue shift in peak upon Sm3+ content increase. Conclusion: Absorption peaks associated with doped ZnO nanoparticles were moved to a longer wavelength side compared to ZnO, with bandgap declines when Sm3+ ions concentration was increased. PL studies concluded that ZnO emission properties could be tuned in the red region along with the existence of blue peaks upon Sm3+ ion doping, which also results in enhancing the PL intensity. These latest properties related to Sm3+ ion-doped nanoparticles prepared by a cost-efficient process appear to be interesting in the field of optoelectronic applications, which makes them a prominent candidate in the form of red light-emitting diodes.


Sign in / Sign up

Export Citation Format

Share Document