How charge regulation and ion–surface affinity affect the differential capacitance of an electrical double layer

2020 ◽  
Vol 22 (32) ◽  
pp. 18229-18238
Author(s):  
Amanda B. Quadre ◽  
Sidney J. de Carvalho ◽  
Guilherme Volpe Bossa

The differential capacitance of an electrical double layer is a topic of great importance to develop more efficient and environment-friendly energy storage devices: electric double layer supercapacitors.

2018 ◽  
Vol 10 (10) ◽  
pp. 3630 ◽  
Author(s):  
Yannan Lin ◽  
Hongxia Zhao ◽  
Feng Yu ◽  
Jinfeng Yang

An extended undergraduate experiment involving electrochemical energy storage devices and green energy is described herein. This experiment allows for curriculum design of specific training modules in the field of green chemistry. Through the study of electrical double layer capacitors, students learned to assemble an electrical double layer capacitor and perform electrochemical measurements (cyclic voltammetry and galvanostatic charge-discharge) to evaluate the effect of various electrolytes. In addition, students powered a diode with the electrical double layer capacitors. We use the laboratory module to successfully connect electrochemistry with green chemistry through the study of a real-world application. In addition, a green chemistry case study was introduced to the laboratory curriculum. During the experiment, students acquired fundamental experience in electrochemistry and gained analysis skills, critical thinking, and scientific literacy. The results of this work can be used as a case study on green chemical education that considers the students’ awareness of renewable and clean energy fields.


2021 ◽  
Vol 1 (3) ◽  
pp. 49-56
Author(s):  
S.M. Zuyev ◽  
◽  
R.A. Maleyev ◽  
YU.M. Shmatkov ◽  
M.YU. Khandzhalov ◽  
...  

This article provides a comparative analysis of various energy storage devices. A detailed review and analysis of molecular energy storage units is carried out, their main characteristics and parame-ters, as well as their application areas, are determined. The main types of molecular energy storage are determined: electric double layer capacitors, pseudo capacitors, hybrid capacitors. Comparison of the characteristics of various batteries is given. The parameters of various energy storage devices are presented. The analysis of molecular energy storage devices and accumulators is carried out. Ttheir advantages and disadvantages are revealed. It has been shown that molecular energy storage or double layer electrochemical capacitors are ideal energy storage systems due to their high specific energy, fast charging and long life compared to conventional capacitors. The article presents oscillograms of a lithium-ion battery with a voltage of 10.8 V at a pulsed load current of 2A of a laptop with and without a molecular energy storage device, as well as oscil-lograms of a laptop with DVD lithium-ion battery with a voltage of 10.8 V with a parallel shutdown of a molecular energy storage device with a capacity of 7 F and without it. The comparative analysis shows that when the molecular energy storage unit with a 7 F capacity is switched on and off, transient processes are significantly improved and there are no supply voltage dips. The dependenc-es of the operating time of a 3.6 V 600 mAh lithium-ion battery at a load of 2 A for powering mo-bile cellular devices with and without a molecular energy storage are given. It is shown that when the molecular energy storage device is switched on, the battery operation time increases by almost 20%.


2013 ◽  
Author(s):  
Xudong Fang ◽  
Donggang Yao

Supercapacitors with an electric double-layer design have attracted great attention in the recent years because they are promising energy storage devices for a number of applications, particularly for portable electronics and electric automobiles. They utilize the interface between the electrode and the electrolyte to store energy, resulting in energy storage devices with high power density but low energy density compared to batteries. To improve the performance and reduce the cost, researchers have made significant progress in increasing energy density, electrode voltage, and cycle life. The increase of the energy density is considered to be achieved mainly by increasing the effective specific interface between the electrodes and the electrolyte. Various electrodes with porous structure have been attempted to increase the specific surface area. The increase of electrode voltage is realized primarily via the change of liquid electrolytes to gel, solid and composite ones. In this overview, they are summarized as solid-like electrolytes. This paper reviews the materials adopted and the processing methods developed for solid-like electrolytes, as well as the general characteristics of supercapacitors employing such electrolytes.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Yongfeng Luo ◽  
Jianxiong Zhang ◽  
Xi Li ◽  
Chunrong Liao ◽  
Xianjun Li

Cellulose widely exists in plant tissues. Due to the large pores between the cellulose units, the regular paper is nontransparent that cannot be used in the optoelectronic devices. But some chemical and physical methods such as 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation can be used to improve the pores scale between the cellulose units to reach nanometer level. The cellulose nanofibers (CNFs) have good mechanical strength, flexibility, thermostability, and low thermal expansion. The paper made of these nanofibers represent a kind of novel nanostructured material with ultrahigh transparency, ultrahigh haze, conductivity, biodegradable, reproducible, low pollution, environment friendly and so on. These advantages make the novel nanostructured paper apply in the optoelectronic device possible, such as electronics energy storage devices. This kind of paper is considered most likely to replace traditional materials like plastics and glass, which is attracting widespread attention, and the related research has also been reported. The purpose of this paper is to review CNFs which are applied in optoelectronic conversion and energy storage.


Author(s):  
Yamato Haniu ◽  
Hiroki Nara ◽  
Seongki Ahn ◽  
Toshiyuki Momma ◽  
Wataru Sugimoto ◽  
...  

Lithium-ion capacitors (LICs) are energy storage devices that bridge the gap between electric double-layer capacitors and lithium-ion batteries (LIBs). A typical LIC cell is composed of a capacitor-type positive electrode...


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1679 ◽  
Author(s):  
Shailesh Kumar ◽  
Phil Martin ◽  
Avi Bendavid ◽  
John Bell ◽  
Kostya (Ken) Ostrikov

The utilization of vertical graphene nanosheet (VGN) electrodes for energy storage in supercapacitors has long been desired yet remains challenging, mostly because of insufficient control of nanosheet stacking, density, surface functionality, and reactivity. Here, we report a single-step, scalable, and environment-friendly plasma-assisted process for the fabrication of densely packed yet accessible surfaces of forested VGNs (F-VGNs) using coconut oil as precursor. The morphology of F-VGNs could be controlled from a continuous thick structure to a hierarchical, cauliflower-like structure that was accessible by the electrolyte ions. The surface of individual F-VGNs was slightly oxygenated, while their interior remained oxygen-free. The fabricated thick (>10 μm) F-VGN electrodes presented specific capacitance up to 312 F/g at a voltage scan rate of 10 mV/s and 148 F/g at 500 mV/s with >99% retention after 1000 cycles. This versatile approach suggests realistic opportunities for further improvements, potentially leading to the integration of F-VGN electrodes in next-generation energy storage devices.


2020 ◽  
Vol 13 (10) ◽  
pp. 3527-3535 ◽  
Author(s):  
Nana Chang ◽  
Tianyu Li ◽  
Rui Li ◽  
Shengnan Wang ◽  
Yanbin Yin ◽  
...  

A frigostable aqueous hybrid electrolyte enabled by the solvation interaction of Zn2+–EG is proposed for low-temperature zinc-based energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document