Piecewise linearity, freedom from self-interaction, and a Coulomb asymptotic potential: three related yet inequivalent properties of the exact density functional

2020 ◽  
Vol 22 (29) ◽  
pp. 16467-16481 ◽  
Author(s):  
Leeor Kronik ◽  
Stephan Kümmel

Three properties of the exact energy functional of DFT are important in general and for spectroscopy in particular, but are not necessarily obeyed by approximate functionals. We explain what they are, why they are important, and how they are related yet inequivalent.

2021 ◽  
Author(s):  
Yangyi Lu ◽  
Jiali Gao

We report a rigorous formulation of multi-state density functional theory (MSDFT) that extends the Kohn-Sham (KS) energy functional for the ground state to a Hamiltonian matrix functional H[D] of the density matrix D in the space spanned by the lowest N adiabatic states. We establish a variational principle of MSDFT, which guarantees that the variational optimization results in a Hamiltonian matrix, whose eigenvalues are the lowest N eigen-energies of the system. We present an explicit expression of H[D] and introduce the correlation matrix functional. Akin to KS-DFT for the ground state, a universal multi-state correlation potential is derived for a two-state system as an illustrative example. This work shows that MSDFT is an exact density functional theory that treats the ground and excited states on an equal footing and provides a framework for practical applications and future developments of approximate functionals for excited states.


2020 ◽  
Vol 22 (16) ◽  
pp. 8616-8624
Author(s):  
Yeonghun Lee ◽  
Xiaolong Yao ◽  
Massimo V. Fischetti ◽  
Kyeongjae Cho

Inelastic electron scattering phenomena in chemical/physical/materials interests: electron radiation damage in materials; DNA damaged by electron scattering; electron therapy; electron microscope; electron-beam-induced deposition for nanofabrication.


2010 ◽  
Vol 25 (21n23) ◽  
pp. 2016-2017
Author(s):  
J. SADOUDI ◽  
T. DUGUET

We review the notion of symmetry breaking and restoration within the frame of nuclear energy density functional methods. We focus on key differences between wave-function- and energy-functional-based methods. In particular, we point to difficulties to formulate the restoration of symmetries within the energy functional framework.


1992 ◽  
Vol 278 ◽  
Author(s):  
Agathagelos Kyrlidis ◽  
Robert A. Brown

AbstractThe thermodynamics of a fcc hard spheres solid is accurately described by recent density-functional approximations. This state is used as a reference in a thermodynamic perturbation analysis for a density-functional theory of Lennard-Jones solids. The free energy functional incorporates liquid state structural information and a density dependent potential decomposition for the Lennard-Jones interatomic potential. The computed free energies of the solids compare very well with the predictions of atonlistic simulations. Solid-liquid coexistence is predicted consistently to within 15% of results of Monte Carlo simulations, over the temperature range 0.75 ≤ kT/c ε ≤ 10.


2004 ◽  
Vol 18 (02n03) ◽  
pp. 73-82 ◽  
Author(s):  
ROBERT K. NESBET

Due to efficient scaling with electron number N, density functional theory (DFT) is widely used for studies of large molecules and solids. Restriction of an exact mean-field theory to local potential functions has recently been questioned. This review summarizes motivation for extending current DFT to include nonlocal one-electron potentials, and proposes methodology for implementation of the theory. The theoretical model, orbital functional theory (OFT), is shown to be exact in principle for the general N-electron problem. In practice it must depend on a parametrized correlation energy functional. Functionals are proposed suitable for short-range Coulomb-cusp correlation and for long-range polarization response correlation. A linearized variational cellular method (LVCM) is proposed as a common formalism for molecules and solids. Implementation of nonlocal potentials is reduced to independent calculations for each inequivalent atomic cell.


Sign in / Sign up

Export Citation Format

Share Document