scholarly journals Heterojunction-Redox Catalysts of FexCoyMg10CaO for High-Temperature CO2 Capture and In-situ Conversion in the Context of Green Manufacturing

Author(s):  
Bin Shao ◽  
Guihua Hu ◽  
Khalil A.M. Alkebsi ◽  
Guanghua Ye ◽  
Xiaoqing Lin ◽  
...  

The integration of carbon capture and CO2 utilization could be a promising solution to the crisis of global warming. By integrating the calcium-looping (CaL) and the reverse-water-gas-shift (RWGS) reaction, a...

Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1076
Author(s):  
Lucy Idowu Ajakaiye Jensen ◽  
Sara Blomberg ◽  
Christian Hulteberg

Catalytic conversion of CO2 to CO using reverse water gas shift (RWGS) reaction is a key intermediate step for many CO2 utilization processes. RWGS followed by well-known synthesis gas conversion may emerge as a potential approach to convert CO2 to valuable chemicals and fuels. Nickel (Ni) based catalysts with ceria-zirconia (Ce-Zr) support can be used to tune the metal-support interactions, resulting in a potentially enhanced CO2 hydrogenation rate and elongation of the catalyst lifespan. The thermodynamics of RWGS reaction is favored at high temperature for CO2 conversion. In this paper the effect of Palladium (Pd) and Iridium (Ir) as promoters in the activity of 10 wt%Ni 2 wt%Pd 0.1wt%Ir/CeZrO2 catalyst for the reverse water gas shift reaction was investigated. RWGS was studied for different feed (CO2:H2) ratios. The new active interface between Ni, Pd and Ir particles is proposed to be an important factor in enhancing catalytic activity. 10 wt%Ni 2 wt%Pd 0.1 wt%Ir/CeZrO2 catalyst showed a better activity with CO2 conversion of 52.4% and a CO selectivity of 98% for H2:CO2 (1:1) compared to the activity of 10%Ni/CeZrO2 with CO2 conversion of 49.9% and a CO selectivity of 93%. The catalytic activity for different feed ratios using 10 wt%Ni 2 wt%Pd 0.1 wt%Ir/CeZrO2 were also studied. The use of palladium and iridium boosts the stability and life span of the Ni-based catalysts. This indicates that the catalyst could be used potentially to design RWGS reactors for CO2 utilization units.


1997 ◽  
Author(s):  
Robert Zubrin ◽  
Mitchell Clapp ◽  
Tom Meyer ◽  
Robert Zubrin ◽  
Mitchell Clapp ◽  
...  

Author(s):  
Daiya Kobayashi ◽  
Hirokazu Kobayashi ◽  
Kohei Kusada ◽  
Tomokazu Yamamoto ◽  
Takaaki Toriyama ◽  
...  

We report PtW solid-solution alloy nanoparticles (NPs) as a reverse water-gas shift (RWGS) reaction catalyst for the first time. Atomic-level alloying of Pt and W significantly enhanced the RWGS reaction activity of Pt NPs.


2020 ◽  
Vol 390 ◽  
pp. 124629 ◽  
Author(s):  
Jose A. Hernandez Lalinde ◽  
Pakpong Roongruangsree ◽  
Jan Ilsemann ◽  
Marcus Bäumer ◽  
Jan Kopyscinski

2020 ◽  
Vol 269 ◽  
pp. 118826 ◽  
Author(s):  
Christopher Panaritis ◽  
Johnny Zgheib ◽  
Sayed A.H. Ebrahim ◽  
Martin Couillard ◽  
Elena A. Baranova

2004 ◽  
Vol 226 (2) ◽  
pp. 382-392 ◽  
Author(s):  
A GOGUET ◽  
F MEUNIER ◽  
J BREEN ◽  
R BURCH ◽  
M PETCH ◽  
...  

Nanoscale ◽  
2019 ◽  
Vol 11 (35) ◽  
pp. 16677-16688 ◽  
Author(s):  
Yulian He ◽  
Ke R. Yang ◽  
Ziwei Yu ◽  
Zachary S. Fishman ◽  
Laura A. Achola ◽  
...  

We develop efficient synthetic methods to prepare various MnO2 structures and investigate their structure–property relationships as applied to the reverse Water Gas Shift (rWGS) reaction with a combination of experimental and theoretical tools.


RSC Advances ◽  
2020 ◽  
Vol 10 (17) ◽  
pp. 10285-10296
Author(s):  
Nicky Bogolowski ◽  
Beatriz Sánchez Batalla ◽  
Baekkyoung Shin ◽  
Jean-Francois Drillet

LSCrM, Ni3Sn2 and GDC20 powders show high activity and selectivity for the RWGS reaction.


Sign in / Sign up

Export Citation Format

Share Document