Reply to the ‘Comment on “Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures”’ by X. Chen, V. Shvartsman, D. C. Lupascu and Q. M. Zhang, Energy Environ. Sci., 2021, DOI: 10.1039/D0EE02548H

Author(s):  
Gaurav Vats ◽  
Ashok Kumar ◽  
Chris R. Bowen ◽  
Nora Ortega ◽  
Ram S. Katiyar

A detailed explanation of the calculations for the electrocaloric effect (ECE) performance of thin-film heterostructures for motivating the scientific community to carry out experiments for validation.

Author(s):  
Xin Chen ◽  
Vladimir Shvartsman ◽  
Doru C. Lupascu ◽  
Q. M. Zhang

In the ferroelectric phase, the change of polarization with temperature from partially switched polarization hysteresis loops has no relation with the electrocaloric effect (ECE) and hence cannot be used in Maxwell relation to deducing ECE.


2016 ◽  
Vol 9 (4) ◽  
pp. 1335-1345 ◽  
Author(s):  
Gaurav Vats ◽  
Ashok Kumar ◽  
Nora Ortega ◽  
Chris R. Bowen ◽  
Ram S. Katiyar

This work examines the potential of PbZr0.53Ti0.47O3/CoFe2O4 (PZT/CFO) multi-layered nanostructures (MLNs) to achieve a giant electrocaloric effect (ECE) and enhanced pyroelectric energy harvesting.


2019 ◽  
Vol 20 (1) ◽  
pp. 90-99
Author(s):  
Aliza Aini Md Ralib ◽  
Nur Wafa Asyiqin Zulfakher ◽  
Rosminazuin Ab Rahim ◽  
Nor Farahidah Za'bah ◽  
Noor Hazrin Hany Mohamad Hanif

Vibration energy harvesting has been progressively developed in the advancement of technology and widely used by a lot of researchers around the world. There is a very high demand for energy scavenging around the world due to it being cheaper in price, possibly miniaturized within a system, long lasting, and environmentally friendly. The conventional battery is hazardous to the environment and has a shorter operating lifespan. Therefore, ambient vibration energy serves as an alternative that can replace the battery because it can be integrated and compatible to micro-electromechanical systems. This paper presents the design and analysis of a MEMS piezoelectric energy harvester, which is a vibration energy harvesting type. The energy harvester was formed using Lead Zicronate Titanate (PZT-5A) as the piezoelectric thin film, silicon as the substrate layer and structural steel as the electrode layer. The resonance frequency will provide the maximum output power, maximum output voltage and maximum displacement of vibration. The operating mode also plays an important role to generate larger output voltage with less displacement of cantilever. Some designs also have been studied by varying height and length of piezoelectric materials. Hence, this project will demonstrate the simulation of a MEMS piezoelectric device for a low power electronic performance. Simulation results show PZT-5A piezoelectric energy with a length of 31 mm and height of 0.16 mm generates maximum output voltage of 7.435 V and maximum output power of 2.30 mW at the resonance frequency of 40 Hz. ABSTRAK: Penuaian tenaga getaran telah berkembang secara pesat dalam kemajuan teknologi dan telah digunakan secara meluas oleh ramai penyelidik di seluruh dunia. Terdapat permintaan yang sangat tinggi di seluruh dunia terhadap penuaian tenaga kerana harganya yang lebih murah, bersaiz kecil dalam satu sistem, tahan lama dan mesra alam. Manakala, bateri konvensional adalah berbahaya bagi alam sekitar dan mempunyai jangka hayat yang lebih pendek. Oleh itu, getaran tenaga dari persekitaran lebih sesuai sebagai alternatif kepada bateri kerana ia mudah diintegrasikan dan serasi dengan sistem mikroelektromekanikal. Kertas kerja ini  membentangkan reka bentuk dan analisis tenaga piezoelektrik MEMS iaitu salah satu jenis penuaian tenaga getaran. Penuai tenaga ini dibentuk menggunakan Lead Zicronate Titanate (PZT-5A) sebagai lapisan filem tipis piezoelektrik, silikon sebagai lapisan substrat dan keluli struktur sebagai lapisan elektrod. Frekuensi resonans akan memberikan hasil tenaga maksima, voltan tenaga maksima dan getaran jarak maksima. Mod pengendalian juga memainkan peranan penting bagi menghasilkan tenaga yang lebih besar. Reka bentuk yang mempunyai ketinggian dan panjang berlainan juga telah diuji dengan menggunakan bahan piezoelektrik yang sama. Oleh itu, projek ini akan menghasilkan simulasi piezoelektrik MEMS yang sesuai digunakan bagi alat elektronik berkuasa rendah. Hasil simulasi menunjukkan dengan panjang 31 mm dan ketinggian 0.16 mm, piezoelektrik PZT ini menghasilkan voltan maksima sebanyak 7.435 V dan tenaga output maksima 2.30 mW pada frekuensi resonans 40 Hz.


2020 ◽  
Vol 46 (4) ◽  
pp. 4300-4306 ◽  
Author(s):  
Biaolin Peng ◽  
Miaomiao Zhang ◽  
Silin Tang ◽  
Jintao Jiang ◽  
Wenguang Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document