scholarly journals Challenges and approaches towards upscaling the assembly of hybrid perovskite solar cells

2020 ◽  
Vol 1 (3) ◽  
pp. 292-309 ◽  
Author(s):  
Ahmed Esmail Shalan

In the current review, we have reported the practical potential of PSCs, strategies, challenges, and approaches towards large-area scale PSC modules via different deposition techniques as well as functional materials for the device architecture.

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 915 ◽  
Author(s):  
Lei Shi ◽  
Huiying Hao ◽  
Jingjing Dong ◽  
Tingting Zhong ◽  
Chen Zhang ◽  
...  

Intermediate phase is considered an important aspect to deeply understand the crystallization procedure in the growth of high-quality perovskite layers by an anti-solvent technique. However, the moisture influence on the intermediate phase formation is not clear in air conditions as yet. In this work, pure (FA0.2MA1.8)Pb3X8(DMSO·DMF) intermediate phase was obtained in as-prepared perovskite film by spin-coating the precursor of co-solvent (DMSO and DMF) in an ambient air (RH20–30%). Moreover, the appropriate quantity of ethyl acetate (C4H8O2, EA) also controls the formation of pure intermediate phase. The uniform and homogeneous perovskite film was obtained after annealing this intermediate film. Therefore, the best power conversion efficiency (PCE) of perovskite solar cells (PSCs) is 16.24% with an average PCE of 15.53%, of which almost 86% of its initial PCE was preserved after 30 days in air conditions. Besides, the steady-state output efficiency ups to 15.38% under continuous illumination. In addition, the PCE of large area device (100 mm2) reaches 11.11% with a little hysteresis effect. This work would give an orientation for PSCs production at the commercial level, which could lower the cost of fabricating the high efficiency PSCs.


2020 ◽  
Vol 4 (5) ◽  
pp. 2134-2148
Author(s):  
Lulu Wang ◽  
Bingbing Fan ◽  
Bing Zheng ◽  
Zhibing Yang ◽  
Penggang Yin ◽  
...  

Although the power conversion efficiency (PCE) of organic–inorganic hybrid perovskite solar cells (PSCs) is comparable to those of commercial solar cells, a challenging problem of instability hampers their further commercialization.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 88
Author(s):  
Helen Hejin Park

Organic–inorganic hybrid perovskite solar cells (PSCs) have received much attention with their rapid progress during the past decade, coming close to the point of commercialization. Various approaches in the process of PSC development have been explored with the motivation to enhance the solar cell power conversion efficiency—while maintaining good device stability from light, temperature, and moisture—and simultaneously optimizing for scalability. Atomic layer deposition (ALD) is a powerful tool in depositing pinhole-free conformal thin-films with excellent reproducibility and accurate and simple control of thickness and material properties over a large area at low temperatures, making it a highly desirable tool to fabricate components of highly efficient, stable, and scalable PSCs. This review article summarizes ALD’s recent contributions to PSC development through charge transport layers, passivation layers, and buffer and recombination layers for tandem applications and encapsulation techniques. The future research directions of ALD in PSC progress and the remaining challenges will also be discussed.


Author(s):  
Shuyan Shao ◽  
Jian Liu ◽  
Giuseppe Portale ◽  
Hong-Hua Fang ◽  
Graeme R. Blake ◽  
...  

Author(s):  
Gizachew Belay Adugna ◽  
Seid Yimer Abate ◽  
Wen-Ti Wu ◽  
Yu-Tai Tao

Author(s):  
Jionghua Wu ◽  
Yusheng Li ◽  
Yiming Li ◽  
Weihao Xie ◽  
Jiangjian Shi ◽  
...  

Hysteresis is used to predict perovskites solar cells recombination properties, implying that hysteresis is a double-edged sword for hybrid perovskite.


2021 ◽  
Vol 33 (14) ◽  
pp. 2005410
Author(s):  
Lingfeng Chao ◽  
Tingting Niu ◽  
Weiyin Gao ◽  
Chenxin Ran ◽  
Lin Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document