scholarly journals Solvent Engineering for Intermediates Phase, All-Ambient-Air-Processed in Organic–Inorganic Hybrid Perovskite Solar Cells

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 915 ◽  
Author(s):  
Lei Shi ◽  
Huiying Hao ◽  
Jingjing Dong ◽  
Tingting Zhong ◽  
Chen Zhang ◽  
...  

Intermediate phase is considered an important aspect to deeply understand the crystallization procedure in the growth of high-quality perovskite layers by an anti-solvent technique. However, the moisture influence on the intermediate phase formation is not clear in air conditions as yet. In this work, pure (FA0.2MA1.8)Pb3X8(DMSO·DMF) intermediate phase was obtained in as-prepared perovskite film by spin-coating the precursor of co-solvent (DMSO and DMF) in an ambient air (RH20–30%). Moreover, the appropriate quantity of ethyl acetate (C4H8O2, EA) also controls the formation of pure intermediate phase. The uniform and homogeneous perovskite film was obtained after annealing this intermediate film. Therefore, the best power conversion efficiency (PCE) of perovskite solar cells (PSCs) is 16.24% with an average PCE of 15.53%, of which almost 86% of its initial PCE was preserved after 30 days in air conditions. Besides, the steady-state output efficiency ups to 15.38% under continuous illumination. In addition, the PCE of large area device (100 mm2) reaches 11.11% with a little hysteresis effect. This work would give an orientation for PSCs production at the commercial level, which could lower the cost of fabricating the high efficiency PSCs.

2021 ◽  
Author(s):  
Maria Vasilopoulou ◽  
Silva Wilson Jose da ◽  
Hyeong Pil Kim ◽  
Brett Nathan Carnio ◽  
Behzad Ahvazi ◽  
...  

Abstract The development of all-printed, flexible solar cells of high efficiency and ultra-low weight will offer advancements for new market entrants. Herein, we report the design and fabrication of all-printed in ambient air, super-flexible perovskite solar cells with approaching 20% power conversion efficiency and extremely low weight of 5.1 g m-2 leading to an unprecedented power-to-weight ratio of 38,470 W Kg-1. This performance advance was achieved through the design of a highly transparent and conducting nanopaper used as a free-standing bottom electrode (FSBE). The FSBE consisted of cellulose nanocrystals grafted with semi-metallic super-reduced polyoxometalate clusters that enabled high conductivities up to 18 S cm-1 combined with transparency >96%. It also acted as a conformal barrier preventing performance loss upon heating at 95 oC under continuous illumination in inert environment; and strong resistance to decomposition when immersed in a mild citric acid water solution for 100 days, which we further exploit to demonstrate full device recyclability. The inherent flexibility of cellulose nanocrystals enabled remarkable flexibility of these cells under 2,000 repeated bending and folding cycles and mechanical strength upon extensive strain up to 20%. Notably, the nanopaper remained unaffected for strains up to 60%. These findings open the door for efficient and lightweight solar cells with a low environmental impact.


2019 ◽  
Vol 201 ◽  
pp. 110113 ◽  
Author(s):  
Tao Ye ◽  
Guifang Han ◽  
Abhijith Surendran ◽  
Jia Li ◽  
Teck Ming Koh ◽  
...  

2021 ◽  
pp. 2103019
Author(s):  
Shaomin Yang ◽  
Jialun Wen ◽  
Zhike Liu ◽  
Yuhang Che ◽  
Jie Xu ◽  
...  

2021 ◽  
pp. 2109968
Author(s):  
Xiaojia Xu ◽  
Xiaoyu Ji ◽  
Rui Chen ◽  
Fangyuan Ye ◽  
Shuaijun Liu ◽  
...  

2019 ◽  
Vol 191 ◽  
pp. 389-398 ◽  
Author(s):  
Shaoyang Ma ◽  
Tao Ye ◽  
Tingting Wu ◽  
Zhe Wang ◽  
Zhixun Wang ◽  
...  

Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 964 ◽  
Author(s):  
Yue Zhang ◽  
Haiming Zhang ◽  
Xiaohui Zhang ◽  
Lijuan Wei ◽  
Biao Zhang ◽  
...  

Organic–inorganic hybrid perovskite solar cells (PSCs) have made immense progress in recent years, owing to outstanding optoelectronic properties of perovskite materials, such as high extinction coefficient, carrier mobility, and low exciton binding energy. Since the first appearance in 2009, the efficiency of PSCs has reached 23.3%. This has made them the most promising rival to silicon-based solar cells. However, there are still several issues to resolve to promote PSCs’ outdoor applications. In this review, three crucial aspects of PSCs, including high efficiency, environmental stability, and low-cost of PSCs, are described in detail. Recent in-depth studies on different aspects are also discussed for better understanding of these issues and possible solutions.


2021 ◽  
Vol 5 (20) ◽  
pp. 7628-7637
Author(s):  
Pengyun Zhang ◽  
Ningxia Gu ◽  
Xiang Chen ◽  
Lixin Song ◽  
Pingfan Du ◽  
...  

In this contribution, PSCs with a high efficiency and good stability are fabricated under ambient conditions without a glove box via introducing triethyl phosphate (TEP) into a perovskite through an antisolvent.


2020 ◽  
Vol 1 (3) ◽  
pp. 292-309 ◽  
Author(s):  
Ahmed Esmail Shalan

In the current review, we have reported the practical potential of PSCs, strategies, challenges, and approaches towards large-area scale PSC modules via different deposition techniques as well as functional materials for the device architecture.


2020 ◽  
Vol 32 (51) ◽  
pp. 2002202 ◽  
Author(s):  
Sang‐Won Lee ◽  
Soohyun Bae ◽  
Donghwan Kim ◽  
Hae‐Seok Lee

2017 ◽  
Vol 2 (9) ◽  
pp. 1978-1984 ◽  
Author(s):  
Jincheol Kim ◽  
Jae Sung Yun ◽  
Yongyoon Cho ◽  
Da Seul Lee ◽  
Benjamin Wilkinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document