[1,2,4]Triazolo[4,3-a]quinoxaline and [1,2,4]triazolo[4,3-a]quinoxaline-1-thiol-derived DNA intercalators: design, synthesis, molecular docking, in silico ADMET profiles and anti-proliferative evaluations

2021 ◽  
Author(s):  
Khaled El-Adl ◽  
Abdel-Ghany A. El-Helby ◽  
Helmy Sakr ◽  
Alaa Elwan

In view of their DNA intercalation activities as anticancer agents, 17 novel [1,2,4]triazolo[4,3-a]quinoxaline derivatives have been designed, synthesized and evaluated against HepG2, HCT-116 and MCF-7 cells.

2021 ◽  
Vol 108 ◽  
pp. 104669
Author(s):  
Asmaa M Sayed ◽  
Fatma A. Taher ◽  
Mohammad R.K. Abdel-Samad ◽  
Mohamed S.A. El-Gaby ◽  
Khaled El‐Adl ◽  
...  

Author(s):  
Nawaf A. Alsaif ◽  
Alaa Elwan ◽  
Mohammed M. Alanazi ◽  
Ahmad J. Obaidullah ◽  
Wael A. Alanazi ◽  
...  

2020 ◽  
Vol 17 (2) ◽  
pp. 158-170 ◽  
Author(s):  
Heba M. Abo-Salem ◽  
Abdullah A Gibriel ◽  
Mohamed E. El Awady ◽  
Adel H. Mandour

Background: Flavonoids are naturally occurring compounds with versatile healthpromoting effects against various diseases. Objective: This aim of this paper is to synthesize and evaluate the biological activity of novel flavone derivatives against cancer. Methods: A new series of 2-hydroxy-α,β-unsaturated ketones 2a-h, was synthesized via the reaction of N-substituted-indole-3-carboxaldehyde 1a-h with 2-hydroxy acetophenone in the presence of piperidine. The oxidative cyclization of 2a-h using hydrogen peroxide/KOH and/or dimethyl sulfoxide/I2 produced the corresponding 2-(N-substituted-1H-indol-3-yl)-3-hydroxy-4H-chromen- 4-ones 3a-h and 2-(N-substituted-1H-indol-3-yl)-4H-chromen-4-ones 4a-h, respectively. Antiproliferative activities for synthesized series were investigated against HCT-116 colon and MCF- 7 breast cancer cell lines. Molecular downstream effects were evaluated using RT-PCR. Moreover, molecular docking was carried out to pinpoint the binding mode of the most active compounds into the active site of Akt enzyme (PDB ID: 3QKK). Results: All compounds exhibited an anti-proliferative activity range of 52-97% and 67.2-99% against HCT-116 and MCF-7, respectively. Compounds 3b, 3h, 3g and 4h had a minimal inhibitory effect on normal BJ1 cells indicating their safety profile. Compounds 3b and 4h, in particular, exhibited the most potent antiproliferative activity against HCT116 and MCF7, meanwhile compounds 3g, 3h and 4g showed potent to moderate activity. Compound 3b had IC50 of 78.3 μM and 53.9 μM against HCT-116 and MCF-7 respectively with comparable IC50 for doxorubicin of 65.1 μM and 45.02 μM. Compound 3b exhibited significant down-regulation for Akt and significant up-regulation of CAS9 and CDKN1genes in all tested cell lines. Conclusion: The synthesized flavone derivatives and particularly compound 3b exhibited promising anticancer activity through Akt inhibition.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 708
Author(s):  
Islam H. El Azab ◽  
Hamdy S. El-Sheshtawy ◽  
Rania B. Bakr ◽  
Nadia A. A. Elkanzi

In an effort to improve and achieve biologically active anticancer agents, a novel series of 1,2,3-triazole-containing hybrids were designed and efficiently synthesized via the Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction of substituted-arylazides with alkyne-functionalized pyrazole-[1,2,4]-triazole hybrids. The structure geometry of these new clicked 1,2,3-triazoles was explored by density functional theory (DFT) using the B3LYP/6-311++G(d,p) level; also, the potential activity of the compounds for light absorption was simulated by time-dependent DFT calculations (TD-DFT). The antitumor impacts of the newly synthesized compounds were in vitro estimated to be towards the human liver cancer cell line (HepG-2), the human colon cancer cell line (HCT-116), and human breast adenocarcinoma (MCF-7). Among the tested compounds, conjugate 7 was the most potent cytotoxic candidate towards HepG-2, HCT-116, and MCF-7, with IC50 = 12.22, 14.16, and 14.64 µM, respectively, in comparison to that exhibited by the standard drug doxorubicin (IC50 = 11.21, 12.46, and 13.45 µM). Finally, a molecular docking study was conducted within the epidermal growth factor receptor (EGFR) active site to suggest possible binding modes. Hence, it could conceivably be hypothesized that analogies 7, 6, and 5 could be considered as decent lead candidate compounds for anticancer agents.


2021 ◽  
Author(s):  
Reda Yousef ◽  
Helmy Sakr ◽  
Ibrahim Eissa ◽  
Ahmed Mehany ◽  
Ahmed Metwaly ◽  
...  

Eleven new quinoxaline derivatives were designed and synthesized as modified VEGFR-2 inhibitors of our previous work. The synthesized compounds were tested against three human cancer cell lines (HepG-2, MCF-7 and...


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1096
Author(s):  
Abd El-Galil E. Amr ◽  
Randa E. Abdel Mageid ◽  
Mohamed El-Naggar ◽  
Ahmed M. Naglah ◽  
Eman S. Nossier ◽  
...  

A series of branched tetrapeptide Schiff bases 3–6 were designed and synthesized from corresponding tetrapeptide hydrazide 2 as a starting material.In vitroevaluation of the synthesized compounds 4–6 against breast MCF-7 carcinoma cells identified their excellent anticancer potency, with IC50 ranging from 8.12 ± 0.14 to 17.55 ± 0.27 μM in comparison with the references, cisplatin and milaplatin (IC50= 13.34 ± 0.11and 18.43 ± 0.13 μM, respectively). Furthermore, all derivatives demonstrated promising activity upon evaluation of theirin vitroandin vivosuppression of p53 ubiquitination and inhibition assessment for LDHA kinase. Finally, molecular docking studies were performed to predict the possible binding features of the potent derivatives within the ATP pocket of LDHA in an attempt to get a lead for developing a more potent LDHA inhibitor with anti-proliferative potency.


Sign in / Sign up

Export Citation Format

Share Document