Nickel doped copper ferrite NixCu1−xFe2O4 for a high crystalline anode material for lithium ion batteries

2021 ◽  
Author(s):  
Adil Saleem ◽  
Muhammad K. Majeed ◽  
Shah-Iram Niaz ◽  
Muhammad Iqbal ◽  
Muhammad Akhlaq ◽  
...  

Transition metal oxides (TMO) have great potential applications in efficient energy storage devices for their commercial possibilities in lithium-ion batteries (LIBs).

2012 ◽  
Vol 441 ◽  
pp. 231-234 ◽  
Author(s):  
Xiang Wu Zhang ◽  
Li Wen Ji ◽  
Zhan Lin ◽  
Ying Li

Research and development in textiles have gone beyond the conventional applications as clothing and furnishing materials; for example, the convergence of textiles, nanotechnologies, and energy science opens up the opportunity to take on one of the major challenges in the 21st century energy. This presentation addresses the development of high-energy lithium-ion batteries using electrospun nanofibers.


Nanoscale ◽  
2021 ◽  
Author(s):  
Yuwan Dong ◽  
Panzhe Su ◽  
Guanjie He ◽  
Huiling Zhao ◽  
Ying Bai

With high theoretical capacity and tap density, LiCoO2 (LCO) cathode has been extensively utilized in lithium-ion batteries (LIBs) for energy storage devices. However, the bottleneck of structural and interfacial instabilities...


RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 5958-5992
Author(s):  
Jahidul Islam ◽  
Faisal I. Chowdhury ◽  
Join Uddin ◽  
Rifat Amin ◽  
Jamal Uddin

With the rapid propagation of flexible electronic devices, flexible lithium-ion batteries are emerging as the most promising energy supplier among all of the energy storage devices due to high energy and power densities with good cycling stability.


2016 ◽  
Vol 4 (43) ◽  
pp. 16771-16800 ◽  
Author(s):  
Umair Gulzar ◽  
Subrahmanyam Goriparti ◽  
Ermanno Miele ◽  
Tao Li ◽  
Giulia Maidecchi ◽  
...  

In this work we have reviewed the state of the art of energy storage devices for textile applications.


Nanoscale ◽  
2019 ◽  
Vol 11 (38) ◽  
pp. 17563-17570 ◽  
Author(s):  
Sung Mi Jung ◽  
Dong Won Kim ◽  
Hyun Young Jung

The morphological design of pristine graphene aerogel and xerogel in both supercapacitors and lithium-ion batteries was demonstrated.


2020 ◽  
Vol 8 ◽  
Author(s):  
Li-Feng Zhou ◽  
Dongrun Yang ◽  
Tao Du ◽  
He Gong ◽  
Wen-Bin Luo

With the development of electric vehicles involving lithium ion batteries as energy storage devices, the demand for lithium ion batteries in the whole industry is increasing, which is bound to lead to a large number of lithium ion batteries in the problem of waste, recycling and reuse. If not handled properly, it will certainly have a negative impact on the environment and resources. Current commercial lithium ion batteries mainly contain transition metal oxides or phosphates, aluminum, copper, graphite, organic electrolytes containing harmful lithium salts, and other chemicals. Therefore, the recycling and reuse of spent lithium ion batteries has been paid more and more attention by many researchers. However, due to the high energy density, high safety and low price of lithium ion batteries have great differences and diversity, the recycling of waste lithium ion batteries has great difficulties. This paper reviews the latest development of the recovery technology of waste lithium ion batteries, including the development of recovery process and products. In addition, the challenges and future economic and application prospects are described.


2020 ◽  
Vol 49 (13) ◽  
pp. 4136-4145
Author(s):  
Pengmei Yu ◽  
Mariona Coll ◽  
Roger Amade ◽  
Islam Alshaikh ◽  
Fernando Pantoja-Suárez ◽  
...  

The combination of carbon nanotubes with transition metal oxides can exhibit complementary charge storage properties for use as electrode materials for next generation energy storage devices.


2020 ◽  
Vol 56 (93) ◽  
pp. 14570-14584
Author(s):  
Yu-Xing Yao ◽  
Chong Yan ◽  
Qiang Zhang

Emerging interfacial chemistry of the graphite anode in today's lithium-ion batteries paves the way to next-generation, high-performance energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document