scholarly journals Low temperature selective catalytic reduction of nitric oxide with an activated carbon-supported zero-valent iron catalyst

RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42613-42618
Author(s):  
Wan Cao ◽  
Weijun Zhang

A novel transition metal-supported catalyst which can be used for denitrification in a low-temperature sintering flue gas.

2017 ◽  
Vol 41 (19) ◽  
pp. 11299-11307 ◽  
Author(s):  
Rong Liu ◽  
Yifan Xu ◽  
Fei Ye ◽  
Feng Jia ◽  
Rui Xu

Mn–Ce based catalysts supported on Ti-bearing blast furnace slag (industrial solid waste) and the doping of transition metals were studied.


2017 ◽  
Vol 53 (5) ◽  
pp. 967-970 ◽  
Author(s):  
Xiuyun Wang ◽  
Zhixin Lan ◽  
Yi Liu ◽  
Yongjin Luo ◽  
Jianjun Chen ◽  
...  

The 1D nanowire or hollow tubular structure of various transition metal oxides can be tuned by controlling heating rates.


Author(s):  
Huiling Zheng ◽  
Renjie Li ◽  
Chengming Zhong ◽  
Zhi Li ◽  
Yikun Kang ◽  
...  

Many transition metal oxides supported on TiO2 have been studied for selective catalytic reduction (SCR) of NO with NH3. However, the trade-off exists between the low-temperature activity and N2 selectivity....


2011 ◽  
Vol 356-360 ◽  
pp. 1528-1534
Author(s):  
Wei Fang Dong

A series of non-precious metal oxides catalysts were prepared for low-temperature selective catalytic reduction (SCR) of NOx with NH3 in a fixed bed reactor. The catalytic performance was evaluated by the removal efficiency of NOx and N2selectivity which were respectively detected by flue gas analyzer and flue gas chromatograph. Furthermore, the components of gas products from the above experiments were analysed with 2010 GC-MS. The results illustrated that the MnO2exhibited the highest NOx conversion to 95.46% and the highest selectivity of N2to 100% at temperature of 393K, then followed ZrO2, Al2O3and Fe2O3.


Sign in / Sign up

Export Citation Format

Share Document