Enhanced ferromagnetic properties of Cu doped two-dimensional GaN monolayer

2015 ◽  
Vol 26 (01) ◽  
pp. 1550009 ◽  
Author(s):  
Fayyaz Hussain ◽  
Y. Q. Cai ◽  
M. Junaid Iqbal Khan ◽  
Muhammad Imran ◽  
Muhammad Rashid ◽  
...  

We demonstrate enhanced ferromagnetism in copper doped two-dimensional GaN monolayer ( GaN -ML). Our first principle calculation based on density functional theory predicted that nonmagnetic Cu -dopant with concentration of 6.25% to be ferromagnetic (FM) in 2D GaN layer which carries a magnetic moment of 2.0 μB per Cu atom and it is found to be long range magnetic coupling among the Cu -dopant. The Cu-dopant in 2D GaN -ML which can be explained in terms of p-d hybridization at Curie temperature and this dopant prefer the FM behavior in 2D GaN layer. Hence Cu doped 2D GaN layer shows strong magnetic properties so that it is a promising material in the field of spintronics.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Adam S. Abdalla ◽  
Muhammad Sheraz Khan ◽  
Suliman Alameen ◽  
Mohamed Hassan Eisa ◽  
Osamah Aldaghri

Abstract We have systematically studied the effect of Fe co-doped on electronic and magnetic properties of wurtzite gallium nitride (GaN) based on the framework of density functional theory (DFT). It is found that GaN doped with Fe at Ga site is more stable than that at N-site. We calculate the electronic structure of pure and single Fe doped GaN within GGA and GGA + U method and find that Fe doped GaN is a magnetic semiconductor with the total magnetization of 5μ B . The magnetic coupling between Fe spins in Fe-doped GaN is an antiferromagnetic (AFM) under the super-exchange mechanism.


2021 ◽  
Author(s):  
Min-Min Guo ◽  
Huimin Yang ◽  
Yuting Du ◽  
Yingjin Wang ◽  
Xiaojing Yang

The photoelectrocatalytic performance of (Sb,N)-MnO2 are explored by experiment and first principle calculation based on density functional theory. The photoelectrochemical performance test shows that 6% (Sb,N)-MnO2 with maximum electrochemical active area...


RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8654-8663
Author(s):  
Fatima Zahra Ramadan ◽  
Flaviano José dos Santos ◽  
Lalla Btissam Drissi ◽  
Samir Lounis

Based on density functional theory combined with low-energy models, we explore the magnetic properties of a hybrid atomic-thick two-dimensional (2D) material made of germanene doped with fluorine atoms in a half-fluorinated configuration (Ge2F).


Author(s):  
Mohamed Helal ◽  
H. M. El-Sayed ◽  
Ahmed A Maarouf ◽  
Mohamed Fadlallah

Motivated by the successful preparation of two-dimensional transition metal dichalcogenides (2D- TMDs) nanomeshes in the last three years, we use density functional theory (DFT) to study the structural stability, mechanical,...


2017 ◽  
Vol 31 (03) ◽  
pp. 1750017 ◽  
Author(s):  
Yan-Ni Wen ◽  
Peng-Fei Gao ◽  
Xi Chen ◽  
Ming-Gang Xia ◽  
Yang Zhang ◽  
...  

First-principles study based on density functional theory has been employed to investigate width-dependent structural stability and magnetic properties of monolayer zigzag MoS2 nanoribbons (ZZ-MoS2 NRs). The width N = 4–6 (the numbers of zigzag Mo–S chains along the ribbon length) are considered. The results show that all studied ZZ-MoS2 NRs are less stable than two-dimensional MoS2 monolayer, exhibiting that a broader width ribbon behaves better structural stability and an inversely proportional relationship between the structural stability (or the ribbon with) and boundary S–Mo interaction. Electronic states imply that all ZZ-MoS2 NRs exhibit magnetic properties, regardless of their widths. Total magnetic moment increases with the increasing width N, which is mainly ascribed to the decreasing S–Mo interaction of the two zigzag edges. In order to confirm this reason, a uniaxial tension strain is applied to ZZ-MoS2 NRs. It has been found that, with the increasing tension strain, the bond length of boundary S–Mo increases, at the same time, the magnetic moment increases also. Our results suggest the rational applications of ZZ-MoS2 NRs in nanoelectronics and spintronics.


2020 ◽  
Vol 213 ◽  
pp. 01023
Author(s):  
Kaihao Geng ◽  
Haining Cao ◽  
Meng-Chang Lin

There is still controversy on the atomistic configuration of aluminium-ion batteries (AIB) cathode when using first principle calculation based on density functional theory (DFT). We examined the relevant cathodic structures of Al/graphite battery by employing several van der Waals (vdW) corrections. Among them, DFT-TS method was determined to be a better dispersion correction in correctly rendering structural features already found through experiment investigations. The systematic comparison paved the way to the choice of vdW parameters in first principle calculation of graphitic electrode.


2014 ◽  
Vol 556-562 ◽  
pp. 43-46
Author(s):  
Ming Zhu Yang ◽  
Mei Shan Wang

In order to lay theoretical foundations for preparation of Ga0.75Al0.25N photocathodes, research on ternary Ш-V alloys Ga0.75Al0.25N are carried on. Using CASTEP software package based on density functional theory within a plane wave ultrasoft pseudo potential scheme, total energies, band structures, density of states, and charge distribution of three different structures of wurtzite Ga0.75Al0.25N are calculated. Results show that the structure in which Al atoms in para-positon of interlayer is most stable. Ga0.75Al0.25N is semiconductor with direct band gap. The threshold wavelength is 321.8nm which can satisfy the need of preparation of “solar blind” photocathodes.


2004 ◽  
Vol 19 (9) ◽  
pp. 2738-2741 ◽  
Author(s):  
Ming Zhang ◽  
Ekkes Brück ◽  
Frank R. de Boer ◽  
Guodong Liu ◽  
Haining Hu ◽  
...  

The hypothetical wurtzite structure chromium chalcogenides were investigated through first-principle calculation within density-functional theory. All compounds are predicted to be true half-metallic ferromagnets with an integer Bohr magneton of 4 μB per unit. Their half-metallic gaps are 1.147, 0.885, and 0.247 eV at their equilibrium volumes for wurtzite-type CrM (M = S, Se, and Te), respectively. The half-metallicity can be maintained even when volumes are expanded by more than 20% for all compounds and compressed by more than 20%, 20%, and 5%, for CrS, CrSe, and CrTe, respectively.


2018 ◽  
Vol 14 (1) ◽  
pp. 60
Author(s):  
Hari Sutrisno

<p>Study of the theoretical  approah to calculate the band structure and density of states (DOS) of vanadium-doped TiO<sub>2</sub> of both anatase and rutile have been done. The first-principle calculations were done using supercell (2x1x1) method. The first-principle calculation of V-doped TiO<sub>2</sub> of both anatase and rutile were analyzed by density-functional theory (DFT) with generalized gradient approximation from Perdew-Burke-Ernzerhof (GGA+PBE), Perdew-Wang’s 1991 (GGA+PW91) and local density approximation (LDA) for exchange-correlation functionals. The calculation of electronic structures show that the V-doped TiO<sub>2</sub>-anatase with high concentration (7.93 %) in 24 atoms are direct- and indirect-gap semiconductor, whereas the V-doped TiO<sub>2</sub>-rutile with high concentration (15.79 %) in 12 atoms is direct-gap semiconductor. The V-doped TiO<sub>2</sub> of both anatase and rutile produce the intermediate bands in the upper states. Ihe V-doped anatase produces intermediate band, which is 2.05, 2.04, 2.06 eV above the valence band for GGA+PBE, GGA+PW91 and LDA, respectively. Meanwhile the V-doped rutile producesintermediate band, which is 1.76, 1.82, 1.74 eV above the valence band for GGA+PBE, GGA+PW91 and LDA, respectively.</p>


Sign in / Sign up

Export Citation Format

Share Document