A review on photobioreactor design and modelling for microalgae production

Author(s):  
Jack Legrand ◽  
Arnaud Artu ◽  
Jérémy Pruvost

A microorganism culture process is a complex system in which physical operating parameters and biological responses strongly interact. Mathematical formulation and modelling of the different phenomena involved in the process...

2018 ◽  
Vol 6 (3) ◽  
pp. 1-6 ◽  
Author(s):  
Vassiliki Mpelogianni ◽  
Ioannis Arvanitakis ◽  
Peter Groumpos

Complex systems have become a research area with increasing interest over the last years. The emergence of new technologies, the increase in computational power with reduced resources and cost, the integration of the physical world with computer based systems has created the possibility of significantly improving the quality of life of humans. While a significant degree of automation within these systems exists and has been provided in the past decade with examples of the smart homes and energy efficient buildings, a paradigm shift towards autonomy has been noted. The need for autonomy requires the extraction of a model; while a strict mathematical formulation usually exists for the individual subsystems, finding a complete mathematical formulation for the complex systems is a near impossible task to accomplish. For this reason, methods such as the Fuzzy Cognitive Maps (FCM) have emerged that are able to provide with a description of the complex system. The system description results from empirical observations made from experts in the related subject – integration of expert’s knowledge – that provide the required cause-effect relations between the interacting components that the FCM needs in order to be formulated. Learning methods are employed that are able to improve the formulated model based on measurements from the actual system. The FCM method, that is able to inherently integrate uncertainties, is able to provide an adequate model for the study of a complex system. With the required system model, the next step towards the development of a autonomous systems is the creation of a control scheme. While FCM can provide with a system model, the system representation proves inadequate to be utilized to design classic model based controllers that require a state space or frequency domain representation. In state space representation, the state vector contains the variables of the system that can describe enough about the system to determine its future behavior in absence of external variables. Thus, within the components – the nodes of the FCM, ideally those can be identified that constitute the state vector of the system. In this work the authors propose the creation of a state feedback control law of complex systems via Fuzzy Cognitive Maps. Given the FCM representation of a system, initially the components-states of the system are identified. Given the identified states, a FCM representation of the controller occurs where the controller parameters are the weights of the cause-effect relations of the system. The FCM of the system then is augmented with the FCM of the controller. An example of the proposed methodology is given via the use of the cart-pendulum system, a common benchmark system for testing the efficiency of control systems.


1976 ◽  
Vol 32 ◽  
pp. 577-588
Author(s):  
C. Mégessier ◽  
V. Khokhlova ◽  
T. Ryabchikova

My talk will be on the oblique rotator model which was first proposed by Stibbs (1950), and since received success and further developments. I shall present two different attempts at describing a star according to this model and the first results obtained in the framework of a Russian-French collaboration in order to test the precision of the two methods. The aim is to give the best possible representation of the element distributions on the Ap stellar surfaces. The first method is the mathematical formulation proposed by Deutsch (1958-1970) and applied by Deutsch (1958) to HD 125248, by Pyper (1969) to α2CVn and by Mégessier (1975) to 108 Aqr. The other one was proposed by Khokhlova (1974) and used by her group.


Author(s):  
R. A. Waugh ◽  
J. R. Sommer

Cardiac sarcoplasmic reticulum (SR) is a complex system of intracellular tubules that, due to their small size and juxtaposition to such electron-dense structures as mitochondria and myofibrils, are often inconspicuous in conventionally prepared electron microscopic material. This study reports a method with which the SR is selectively “stained” which facilitates visualizationwith the transmission electron microscope.


Author(s):  
P.J. Killingworth ◽  
M. Warren

Ultimate resolution in the scanning electron microscope is determined not only by the diameter of the incident electron beam, but by interaction of that beam with the specimen material. Generally, while minimum beam diameter diminishes with increasing voltage, due to the reduced effect of aberration component and magnetic interference, the excited volume within the sample increases with electron energy. Thus, for any given material and imaging signal, there is an optimum volt age to achieve best resolution.In the case of organic materials, which are in general of low density and electric ally non-conducting; and may in addition be susceptible to radiation and heat damage, the selection of correct operating parameters is extremely critical and is achiev ed by interative adjustment.


Author(s):  
David C Joy

The electron source is the most important component of the Scanning electron microscope (SEM) since it is this which will determine the overall performance of the machine. The gun performance can be described in terms of quantities such as its brightness, its source size, its energy spread, and its stability and, depending on the chosen application, any of these factors may be the most significant one. The task of the electron gun in an SEM is, in fact, particularly difficult because of the very wide range of operational parameters that may be required e.g a variation in probe size of from a few angstroms to a few microns, and a probe current which may go from less than a pico-amp to more than a microamp. This wide range of operating parameters makes the choice of the optimum source for scanning microscopy a difficult decision.Historically, the first step up from the sealed glass tube ‘cathode ray generator’ was the simple, diode, tungsten thermionic emitter.


2010 ◽  
Author(s):  
Charlotte Leonie Stewart ◽  
Jolanta Opacka-Juffry ◽  
Changiz Mohiyeddini

1998 ◽  
Author(s):  
Svetlana Apenova ◽  
Igor Yevin

2020 ◽  
Vol 92 (3) ◽  
pp. 31101
Author(s):  
Zahoor Iqbal ◽  
Masood Khan ◽  
Awais Ahmed

In this study, an effort is made to model the thermal conduction and mass diffusion phenomena in perspective of Buongiorno’s model and Cattaneo-Christov theory for 2D flow of magnetized Burgers nanofluid due to stretching cylinder. Moreover, the impacts of Joule heating and heat source are also included to investigate the heat flow mechanism. Additionally, mass diffusion process in flow of nanofluid is examined by employing the influence of chemical reaction. Mathematical modelling of momentum, heat and mass diffusion equations is carried out in mathematical formulation section of the manuscript. Homotopy analysis method (HAM) in Wolfram Mathematica is utilized to analyze the effects of physical dimensionless constants on flow, temperature and solutal distributions of Burgers nanofluid. Graphical results are depicted and physically justified in results and discussion section. At the end of the manuscript the section of closing remarks is also included to highlight the main findings of this study. It is revealed that an escalation in thermal relaxation time constant leads to ascend the temperature curves of nanofluid. Additionally, depreciation is assessed in mass diffusion process due to escalating amount of thermophoretic force constant.


Sign in / Sign up

Export Citation Format

Share Document