g-C3N4-based photoelectrodes for photoelectrochemical water splitting: a review

2020 ◽  
Vol 8 (41) ◽  
pp. 21474-21502
Author(s):  
Xingyue Zou ◽  
Zhuxing Sun ◽  
Yun Hang Hu

Recent progress in and future perspectives on strategies for improving the intrinsic properties of g-C3N4 and the quality of g-C3N4-based film electrodes for highly efficient and stable PEC water splitting.

2019 ◽  
Vol 7 (45) ◽  
pp. 26077-26088 ◽  
Author(s):  
Guangwei Zheng ◽  
Jinshu Wang ◽  
Guannan Zu ◽  
Haibing Che ◽  
Chen Lai ◽  
...  

Promising PEC water splitting activity with a photocurrent density of 3.16 mA cm−2 at 1.23 V vs. RHE was demonstrated in sandwich structured WO3 with exposed highly reactive (002) facet and superior crystallinity of 2-D nanoplatelets.


Author(s):  
Yong Peng ◽  
Chun Hong Mak ◽  
Ji Jung Kai ◽  
Minshu Du ◽  
Li Ji ◽  
...  

For the global energy demand and climate change challenges, seeking renewable, sustainable energy sources is of great significance. Photoelectrochemical (PEC) water splitting is one of the promising technologies for converting...


2019 ◽  
Author(s):  
Jiajia Tao ◽  
Hong-Ping Ma ◽  
Kaiping Yuan ◽  
Yang Gu ◽  
Jianwei Lian ◽  
...  

<div>As a promising oxygen evolution reaction semiconductor, TiO2 has been extensively investigated for solar photoelectrochemical water splitting. Here, a highly efficient and stable strategy for rationally preparing GaON cocatalysts on TiO2 by atomic layer deposition is demonstrated, which we show significantly enhances the</div><div>photoelectrochemical performance compared to TiO2-based photoanodes. For TiO2@20 nm-GaON core-shell nanowires a photocurrent density up to 1.10 mA cm-2 (1.23 V vs RHE) under AM 1.5 G irradiation (100 mW cm-2) has been achieved, which is 14 times higher than that of TiO2 NWs. Furthermore, the oxygen vacancy formation on GaON as well as the band gap matching with TiO2 not only provides more active sites for water oxidation but also enhances light absorption to promote interfacial charge separation and migration. Density functional theory studies of model systems of GaON-modified TiO2 confirm the band gap reduction, high reducibility and ability to activate water. The highly efficient and stable systems of TiO2@GaON core-shell nanowires provide a deeper understanding and universal strategy for enhancing photoelectrochemical performance of photoanodes now available. </div>


2019 ◽  
Vol 7 (14) ◽  
pp. 8061-8072 ◽  
Author(s):  
Erhuan Zhang ◽  
Jia Liu ◽  
Muwei Ji ◽  
Hongzhi Wang ◽  
Xiaodong Wan ◽  
...  

Construction of hollow anisotropic semiconductor nanostructures that possess excellent crystallinity, flexibly tunable structure/morphology and aqueous dispersity is of special interest for photoelectrochemical (PEC) water splitting


2019 ◽  
Vol 48 (31) ◽  
pp. 11934-11940 ◽  
Author(s):  
Jianmin Wang ◽  
Yunan Wang ◽  
Xinchao Xv ◽  
Yan Chen ◽  
Xi Yang ◽  
...  

Defective Fe3+ self-doped spinel ZnFe2O4 with abundant oxygen vacancies exhibits largely enhanced photoelectrochemical performance.


Sign in / Sign up

Export Citation Format

Share Document