Synthetic polymers based on lignin-derived aromatic monomers for high-performance energy-storage materials

2020 ◽  
Vol 8 (45) ◽  
pp. 24065-24074
Author(s):  
Weisheng Yang ◽  
Xiu Wang ◽  
Liang Jiao ◽  
Huiyang Bian ◽  
Yongzheng Qiao ◽  
...  

Lignin, a renewable and low-cost biopolymer, has been widely reported as an energy-storage material.

2014 ◽  
Vol 1004-1005 ◽  
pp. 849-852
Author(s):  
Hai Yan Zhang ◽  
Xue Min Hu

Preparing of cool wool natural energy storage materials from wool fiber is a feasible and effective method. The structure characteristics of wool and the reason that wool has cool properties were introduced. The preparation principle, preparation methods and properties of cool wool fiber was studied. The preparation methods of cool wool mainly include scale stripping and surface coating. Scale stripping mainly consists of Chlorination, oxidation, biological enzyme treatment and plasma treatment. Surface coating mainly consists of resin finishing and ceramic finishing. Slenderizing and adding energy storage materials are also the effective methods. Wool as a new concept of natural energy storage material is recognized by people.


2021 ◽  
Author(s):  
Zhaohe WANG ◽  
Yanghua CHEN

To solve the issues of flowing and leaking of myristic acid (MA) as phase change energy storage material in practical application, a novel microencapsulated composite phase change energy storage material was prepared by sol-gel method using myristic acid (MA) as core material and titanium dioxide (TiO2) as shell material. The chemical structure, crystal structure, micromorphology, phase change characteristics and thermal stability of phase change microencapsulated energy storage materials were characterized by using Fourier transform infrared spectrometer (FT-IR), X-ray diffraction analyzer (XRD), field emission scanning electron microscope (FE-SEM), differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA). The consequents illustrated that the ideal sample melted at 54.97 °C with the latent heat of 55.76 J/g and solidified at 49.85 °C with the latent heat of 54.55 J/g. In general, the prepared microencapsulated phase change materials possessed good thermal properties and thermal stabilities. It is predicted that the shape-stabilized MA/TiO2 composites have great potential for thermal energy storage.


2021 ◽  
Author(s):  
Yi He ◽  
Lei Xie ◽  
Shixiang Ding ◽  
Yujia Long ◽  
Xinyi Zhou ◽  
...  

Although the zinc oxide (ZnO) with wide distribution is one of the most attractive energy storage materials, the low electronic conductivity and insufficient active sites of bulk ZnO increase the...


Author(s):  
Nicolas Calvet ◽  
Guilhem Dejean ◽  
Lucía Unamunzaga ◽  
Xavier Py

The ambitious DOE SunShot cost target ($0.06/kWh) for concentrated solar power (CSP) requires innovative concepts in the collector, receiver, and power cycle subsystems, as well as in thermal energy storage (TES). For the TES, one innovative approach is to recycle waste from metallurgic industry, called slags, as low-cost high-temperature thermal energy storage material. The slags are all the non-metallic parts of cast iron which naturally rises up by lower density at the surface of the fusion in the furnace. Once cooled down some ceramic can be obtained mainly composed of oxides of calcium, silicon, iron, and aluminum. These ceramics are widely available in USA, about 120 sites in 32 States and are sold at a very low average price of $5.37/ton. The US production of iron and steel slag was estimated at 19.7 million tons in 2003 which guarantees a huge availability of material. In this paper, electric arc furnace (EAF) slags from steelmaking industry, also called “black slags”, were characterized in the range of temperatures of concentrated solar power. The raw material is thermo-chemically stable up to 1100 °C and presents a low cost per unit thermal energy stored ($0.21/kWht for ΔT = 100 °C) and a suitable heat capacity per unit volume of material (63 kWht/m3for ΔT = 100°C). These properties should enable the development of new TES systems that could achieve the TES targets of the SunShot (temperature above 600 °C, installed cost below $15/kWht, and heat capacity ≥25 kWht/m3). The detailed experimental results are presented in the paper. After its characterization, the material has been shaped in form of plates and thermally cycled in a TES system using hot-air as heat transfer fluid. Several cycles of charge and discharged were performed successfully and the concept was validated at laboratory scale. Apart from availability, low-cost, and promising thermal properties, the use of slag promotes the conservation of natural resources and is a noble solution to decrease the cost and to develop sustainable TES systems.


2016 ◽  
Vol 5 (1) ◽  
pp. 450-459 ◽  
Author(s):  
Vikrant Sahu ◽  
Monu Mishra ◽  
Govind Gupta ◽  
Gurmeet Singh ◽  
Raj Kishore Sharma

Energy ◽  
2015 ◽  
Vol 89 ◽  
pp. 601-609 ◽  
Author(s):  
Iñigo Ortega-Fernández ◽  
Nicolas Calvet ◽  
Antoni Gil ◽  
Javier Rodríguez-Aseguinolaza ◽  
Abdessamad Faik ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Jiage Yu ◽  
Zhijie Liu ◽  
Xian Zhang ◽  
Yu Ding ◽  
Zhengbing Fu ◽  
...  

As a bimetal oxide, partial zinc stannate (ZnSnO3) is one of the most promising next-generation lithium anode materials, which has the advantages of low operating voltage, large theoretical capacity (1,317 mA h g−1), and low cost. However, the shortcomings of large volume expansion and poor electrical conductivity hinder its practical application. The core-shell ZnSnO3@ nitrogen-doped carbon (ZSO@NC) nanocomposite was successfully obtained by coating ZnSnO3 with polypyrrole (PPy) through in situ polymerization under ice-bath conditions. Benefiting from this unique compact structure, the shell formed by PPy cannot only effectively alleviate the volume expansion effect of ZnSnO3 but also enhance the electrical conductivity, thus, greatly improving the lithium storage performance. ZSO@NC can deliver a reversible capacity of 967 mA h g−1 at 0.1 A g−1 after 300 cycles and 365 mA h g−1 at 2 A g−1 after 1,000 cycles. This work may provide a new avenue for the synthesis of bimetal oxide with a core–shell structure for high-performance energy storage materials.


Nanoscale ◽  
2021 ◽  
Author(s):  
Huifang Yang ◽  
Haoran Guo ◽  
Xinpan Li ◽  
Wenlu Ren ◽  
Rui Song

The electrode material with hierarchical nanostructure derived from transition metal-based compound is an important branch of energy storage materials and has attracted widespread attention in recent years. Herein, the Cu-Ni(OH)2@CoO...


Sign in / Sign up

Export Citation Format

Share Document