Phytic acid functionalized magnetic bimetallic metal–organic frameworks for phosphopeptide enrichment

2021 ◽  
Vol 9 (7) ◽  
pp. 1811-1820
Author(s):  
Shuang Yan ◽  
Bin Luo ◽  
Jia He ◽  
Fang Lan ◽  
Yao Wu

Novel bimetallic metal–organic framework nanocomposites were fabricated by a facile yet efficient method. The as-prepared nanomaterial exhibited high sensitivity and high selectivity toward phosphopeptides and good reusability of five cycles for enriching phosphopeptides.

2020 ◽  
Author(s):  
Jesse Park ◽  
Brianna Collins ◽  
Lucy Darago ◽  
Tomce Runcevski ◽  
Michael Aubrey ◽  
...  

<b>Materials that combine magnetic order with other desirable physical attributes offer to revolutionize our energy landscape. Indeed, such materials could find transformative applications in spintronics, quantum sensing, low-density magnets, and gas separations. As a result, efforts to design multifunctional magnetic materials have recently moved beyond traditional solid-state materials to metal–organic solids. Among these, metal–organic frameworks in particular bear structures that offer intrinsic porosity, vast chemical and structural programmability, and tunability of electronic properties. Nevertheless, magnetic order within metal–organic frameworks has generally been limited to low temperatures, owing largely to challenges in creating strong magnetic exchange in extended metal–organic solids. Here, we employ the phenomenon of itinerant ferromagnetism to realize magnetic ordering at <i>T</i><sub>C</sub> = 225 K in a mixed-valence chromium(II/III) triazolate compound, representing the highest ferromagnetic ordering temperature yet observed in a metal–organic framework. The itinerant ferromagnetism is shown to proceed via a double-exchange mechanism, the first such observation in any metal–organic material. Critically, this mechanism results in variable-temperature conductivity with barrierless charge transport below <i>T</i><sub>C</sub> and a large negative magnetoresistance of 23% at 5 K. These observations suggest applications for double-exchange-based coordination solids in the emergent fields of magnetoelectrics and spintronics. Taken together, the insights gleaned from these results are expected to provide a blueprint for the design and synthesis of porous materials with synergistic high-temperature magnetic and charge transport properties. </b>


2020 ◽  
Vol 24 (16) ◽  
pp. 1876-1891
Author(s):  
Qiuyun Zhang ◽  
Yutao Zhang ◽  
Jingsong Cheng ◽  
Hu Li ◽  
Peihua Ma

Biofuel synthesis is of great significance for producing alternative fuels. Among the developed catalytic materials, the metal-organic framework-based hybrids used as acidic, basic, or supported catalysts play major roles in the biodiesel production. This paper presents a timely and comprehensive review of recent developments on the design and preparation of metal-organic frameworks-based catalysts used for biodiesel synthesis from various oil feedstocks, including MILs-based catalysts, ZIFs-based catalysts, UiO-based catalysts, Cu-BTC-based catalysts, and MOFs-derived porous catalysts. Due to their unique and flexible structures, excellent thermal and hydrothermal stability, and tunable host-guest interactions, as compared with other heterogeneous catalysts, metal-organic framework-based catalysts have good opportunities for application in the production of biodiesel at industrial scale.


2021 ◽  
Author(s):  
Fajar Inggit Pambudi ◽  
Michael William Anderson ◽  
Martin Attfield

Atomic force microscopy has been used to determine the surface crystal growth of two isostructural metal-organic frameworks, [Zn2(ndc)2(dabco)] (ndc = 1,4-naphthalene dicarboxylate, dabco = 4-diazabicyclo[2.2.2]octane) (1) and [Cu2(ndc)2(dabco)] (2) from...


2021 ◽  
Vol 1147 ◽  
pp. 144-154
Author(s):  
Yao-Yao Zhang ◽  
Wang Xu ◽  
Jian-Fang Cao ◽  
Yang Shu ◽  
Jian-Hua Wang

Author(s):  
Marta Lara-Serrano ◽  
Silvia Morales-delaRosa ◽  
Jose M. Campos-Martin ◽  
Víctor Karim Abdelkader-Fernández ◽  
Luis Cunha-Silva ◽  
...  

The isomerization reaction of glucose to fructose was studied using five selected metal-organic frameworks (MOFs) as catalysts and a mixture of γ-valerolactone and 10% H2O as the solvent. MOFs with...


Author(s):  
Jiajun Song ◽  
Jianzhong Zheng ◽  
Anneng Yang ◽  
Hong Liu ◽  
Zeyu Zhao ◽  
...  

Two-dimensional (2D) conductive metal-organic frameworks (MOFs) can not only inherit the high porosity and tailorability of traditional MOFs but also exhibit unique charge transport properties, offering promising opportunities for applications...


2017 ◽  
Vol 46 (47) ◽  
pp. 16381-16386 ◽  
Author(s):  
Chengliang Xiao ◽  
Mark A. Silver ◽  
Shuao Wang

137Cs, 90Sr, 238U, 79Se, and 99Tc sequestrations from aqueous solution by metal–organic framework materials are summarized in this Frontier article.


2016 ◽  
Vol 52 (14) ◽  
pp. 3003-3006 ◽  
Author(s):  
Linyi Bai ◽  
Binbin Tu ◽  
Yi Qi ◽  
Qiang Gao ◽  
Dong Liu ◽  
...  

Incorporating supramolecular recognition units, crown ether rings, into metal–organic frameworks enables the docking of metal ions through complexation for enhanced performance.


2021 ◽  
Author(s):  
Songwei Zhang ◽  
Yaqi Fan ◽  
Lianshun Luo ◽  
Conger Li ◽  
Yanhang Ma ◽  
...  

We report the first examples of yolk-shell metal-organic framework (MOF) heterostructures based on topologically distinct MOFs: ZIF-8/ZIF-67 and UiO-66. This was accomplished through an innovative reverse synthesis strategy: A hollow...


Sign in / Sign up

Export Citation Format

Share Document