Orally pH-activated "nano-bomb" carrier combined with berberine by regulating gene silencing and gut microbiota for site-specific treatment of ulcerative colitis

2022 ◽  
Author(s):  
Mei Yang ◽  
Chunhua Yang ◽  
Yujie Zhang ◽  
XiangJi Yan ◽  
Yana Ma ◽  
...  

Ulcerative colitis (UC) is a chronic, relapsing inflammatory bowel disease that features colonic epithelial barrier dysfunction and gut dysbiosis. Preclinical studies demonstrated that inhibiting the overexpression of CD98 via small...

2019 ◽  
Vol 10 (5) ◽  
pp. 2906-2913 ◽  
Author(s):  
Yanlong Li ◽  
Xudong Tian ◽  
Shengcai Li ◽  
Lijun Chang ◽  
Ping Sun ◽  
...  

Dysfunction of the intestinal epithelial barrier plays an important role in the pathogenesis of several intestinal diseases, including celiac disease, inflammatory bowel disease, and irritable bowel syndrome.


2019 ◽  
Vol 317 (2) ◽  
pp. G90-G97 ◽  
Author(s):  
Doug N. Halligan ◽  
Mohammed N. Khan ◽  
Eric Brown ◽  
Catherine R. Rowan ◽  
Ivan S. Coulter ◽  
...  

Inflammatory bowel disease (IBD) is characterized by epithelial barrier dysfunction with resultant inflammation as the mucosal immune system becomes exposed to luminal antigens. The hydroxylase inhibitor dimethyloxalylglycine (DMOG) reduces symptoms in experimental colitis through the upregulation of genes promoting barrier function and inhibition of epithelial cell apoptosis. The immunosuppressive drug cyclosporine reduces inflammation associated with IBD via suppression of immune cell activation. Given the distinct barrier protective effect of DMOG and the anti-inflammatory properties of cyclosporine, we hypothesized that combining these drugs may provide an enhanced protective effect by targeting both barrier dysfunction and inflammation simultaneously. We used the dextran sulfate sodium model of colitis in C57BL/6 mice to determine the combinatorial efficacy of cyclosporine and DMOG. While cyclosporine and DMOG ameliorated disease progression, in combination they had an additive protective effect that surpassed the level of protection afforded by either drug alone. The ability of DMOG to augment the anti-inflammatory effects of cyclosporine was largely due to preservation of barrier function and at least in part due to zonula occludens-1 regulation. We propose that combining the barrier protective effects of a hydroxylase inhibitor with the anti-inflammatory effects of cyclosporine provides added therapeutic benefit in colitis. NEW & NOTEWORTHY Inflammatory bowel disease is the result of decreased intestinal epithelial barrier function leading to exposure of the mucosal immune system to luminal antigens causing inflammation, which in turn further decreases epithelial barrier function. We demonstrate for the first time that strengthening the epithelial barrier with a hydroxylase inhibitor in combination with the administration of the immunosuppressive cyclosporine provides additive therapeutic advantage in a murine model of colitis


2019 ◽  
Vol 10 (2) ◽  
pp. 1235-1242 ◽  
Author(s):  
Caimei He ◽  
Jun Deng ◽  
Xin Hu ◽  
Sichun Zhou ◽  
Jingtao Wu ◽  
...  

Inflammation caused by either intrinsic or extrinsic toxins results in intestinal barrier dysfunction, contributing to inflammatory bowel disease (IBD) and other diseases.


Proteomes ◽  
2018 ◽  
Vol 6 (2) ◽  
pp. 17 ◽  
Author(s):  
Jessica Lee ◽  
Valerie Wasinger ◽  
Yunki Yau ◽  
Emil Chuang ◽  
Vijay Yajnik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document