gut dysbiosis
Recently Published Documents


TOTAL DOCUMENTS

631
(FIVE YEARS 468)

H-INDEX

35
(FIVE YEARS 16)

2023 ◽  
Vol 83 ◽  
Author(s):  
I. Liaqat ◽  
N. M. Ali ◽  
N. Arshad ◽  
S. Sajjad ◽  
F. Rashid ◽  
...  

Abstract The study was aimed to assess impact of high fat diet (HFD) and synthetic human gut microbiota (GM) combined with HFD and chow diet (CD) in inducing type-2 diabetes (T2D) using mice model. To our knowledge, this is the first study using selected human GM transplantation via culture based method coupled dietary modulation in mice for in vivo establishment of inflammation leading to T2D and gut dysbiosis. Twenty bacteria (T2D1-T2D20) from stool samples of confirmed T2D subjects were found to be morphologically different and subjected to purification on different media both aerobically and anerobically, which revealed seven bacteria more common among 20 isolates on the basis of biochemical characterization. On the basis of 16S rRNA gene sequencing, these seven isolates were identified as Bacteroides stercoris (MT152636), Lactobacillus acidophilus (MT152637), Lactobacillus salivarius (MT152638), Ruminococcus bromii (MT152639), Klebsiella aerogenes (MT152640), Bacteroides fragilis (MT152909), Clostridium botulinum (MT152910). The seven isolates were subsequently used as synthetic gut microbiome (GM) for their role in inducing T2D in mice. Inbred strains of albino mice were divided into four groups and were fed with CD, HFD, GM+HFD and GM+CD. Mice receiving HFD and GM+modified diet (CD/HFD) showed highly significant (P<0.05) increase in weight and blood glucose concentration as well as elevated level of inflammatory cytokines (TNF-α, IL-6, and MCP-1) compared to mice receiving CD only. The 16S rRNA gene sequencing of 11 fecal bacteria obtained from three randomly selected animals from each group revealed gut dysbiosis in animals receiving GM. Bacterial strains including Bacteroides gallinarum (MT152630), Ruminococcus bromii (MT152631), Lactobacillus acidophilus (MT152632), Parabacteroides gordonii (MT152633), Prevotella copri (MT152634) and Lactobacillus gasseri (MT152635) were isolated from mice treated with GM+modified diet (HFD/CD) compared to strains Akkermansia muciniphila (MT152625), Bacteriodes sp. (MT152626), Bacteroides faecis (MT152627), Bacteroides vulgatus (MT152628), Lactobacillus plantarum (MT152629) which were isolated from mice receiving CD/HFD. In conclusion, these findings suggest that constitution of GM and diet plays significant role in inflammation leading to onset or/and possibly progression of T2D. .


Author(s):  
Richa Jalodia ◽  
Yaa Fosuah Abu ◽  
Mark Ryan Oppenheimer ◽  
Bridget Herlihy ◽  
Jingjing Meng ◽  
...  

2022 ◽  
Vol 29 ◽  
Author(s):  
Cianci Rossella ◽  
Franza Laura ◽  
Massaro Maria Grazia ◽  
Borriello Raffaele ◽  
Tota Antonio ◽  
...  

Abstract: Gut microbiota (GM) comprises more than one thousand microorganisms between bacterial species, viruses, fungi, and protozoa, and represents the main actor of a wide net of molecular interactions, involving, among others, the endocrine system, immune responses, and metabolism. GM influences many endocrine functions such as adrenal steroidogenesis, thyroid function, sexual hormones, IGF-1 pathway and peptides produced in gastrointestinal system. It is fundamental in glycaemic control and obesity, while also exerting an important function in modulating the immune system and associated inflammatory disease. The result of this crosstalk in gut mucosa is the formation of the intestinal immunological niche. Visceral adipose tissue (VAT) produces about 600 different peptides, it is involved in lipid and glucose metabolism and in some immune reactions through several adipokines. GM and VAT interact in a bidirectional fashion: while gut dysbiosis can modify VAT adipokines and hormone secretion, VAT hyperplasia modifies GM composition. Acquired or genetic factors leading to gut dysbiosis or increasing VAT (i.e., Western diet) induce a proinflammatory condition, which plays a pivotal role in the development of dysmetabolic and immunologic conditions, such as diabetes mellitus. Diabetes is clearly associated with specific patterns of GM alterations, with an abundance or reduction of GM species involved in controlling mucosal barrier status, glycaemic levels and exerting a pro- or anti-inflammatory activity. All these factors could explain the higher incidence of several inflammatory conditions in Western countries; furthermore, besides the specific alterations observed in diabetes, this paradigm could represent a common pathway acting in many metabolic conditions and could pave the way to a new, interesting therapeutic approach.


2022 ◽  
Vol 10 (1) ◽  
pp. 108
Author(s):  
Ji Youn Yoo ◽  
Sarah Sniffen ◽  
Kyle Craig McGill Percy ◽  
Veera Bramhachari Pallaval ◽  
Bojjibabu Chidipi

Atherosclerosis is a leading cause of cardiovascular disease and mortality worldwide. Alterations in the gut microbiota composition, known as gut dysbiosis, have been shown to contribute to atherosclerotic cardiovascular disease (ACVD) development through several pathways. Disruptions in gut homeostasis are associated with activation of immune processes and systemic inflammation. The gut microbiota produces several metabolic products, such as trimethylamine (TMA), which is used to produce the proatherogenic metabolite trimethylamine-N-oxide (TMAO). Short-chain fatty acids (SCFAs), including acetate, butyrate, and propionate, and certain bile acids (BAs) produced by the gut microbiota lead to inflammation resolution and decrease atherogenesis. Chronic low-grade inflammation is associated with common risk factors for atherosclerosis, including metabolic syndrome, type 2 diabetes mellitus (T2DM), and obesity. Novel strategies for reducing ACVD include the use of nutraceuticals such as resveratrol, modification of glucagon-like peptide 1 (GLP-1) levels, supplementation with probiotics, and administration of prebiotic SCFAs and BAs. Investigation into the relationship between the gut microbiota, and its metabolites, and the host immune system could reveal promising insights into ACVD development, prognostic factors, and treatments.


2022 ◽  
Author(s):  
Mei Yang ◽  
Chunhua Yang ◽  
Yujie Zhang ◽  
XiangJi Yan ◽  
Yana Ma ◽  
...  

Ulcerative colitis (UC) is a chronic, relapsing inflammatory bowel disease that features colonic epithelial barrier dysfunction and gut dysbiosis. Preclinical studies demonstrated that inhibiting the overexpression of CD98 via small...


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Natalia Vallianou ◽  
Gerasimos Socrates Christodoulatos ◽  
Irene Karampela ◽  
Dimitrios Tsilingiris ◽  
Faidon Magkos ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents a complex process implicating numerous factors—genetic, metabolic, and dietary—intertwined in a multi-hit etiopathogenetic model. Recent data have highlighted the role of gut dysbiosis, which may render the bowel more permeable, leading to increased free fatty acid absorption, bacterial migration, and a parallel release of toxic bacterial products, lipopolysaccharide (LPS), and proinflammatory cytokines that initiate and sustain inflammation. Although gut dysbiosis is present in each disease stage, there is currently no single microbial signature to distinguish or predict which patients will evolve from NAFLD to NASH and HCC. Using 16S rRNA sequencing, the majority of patients with NAFLD/NASH exhibit increased numbers of Bacteroidetes and differences in the presence of Firmicutes, resulting in a decreased F/B ratio in most studies. They also present an increased proportion of species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus, whereas Oscillibacter, Flavonifaractor, Odoribacter, and Alistipes spp. are less prominent. In comparison to healthy controls, patients with NASH show a higher abundance of Proteobacteria, Enterobacteriaceae, and Escherichia spp., while Faecalibacterium prausnitzii and Akkermansia muciniphila are diminished. Children with NAFLD/NASH have a decreased proportion of Oscillospira spp. accompanied by an elevated proportion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. Gut microbiota composition may vary between population groups and different stages of NAFLD, making any conclusive or causative claims about gut microbiota profiles in NAFLD patients challenging. Moreover, various metabolites may be involved in the pathogenesis of NAFLD, such as short-chain fatty acids, lipopolysaccharide, bile acids, choline and trimethylamine-N-oxide, and ammonia. In this review, we summarize the role of the gut microbiome and metabolites in NAFLD pathogenesis, and we discuss potential preventive and therapeutic interventions related to the gut microbiome, such as the administration of probiotics, prebiotics, synbiotics, antibiotics, and bacteriophages, as well as the contribution of bariatric surgery and fecal microbiota transplantation in the therapeutic armamentarium against NAFLD. Larger and longer-term prospective studies, including well-defined cohorts as well as a multi-omics approach, are required to better identify the associations between the gut microbiome, microbial metabolites, and NAFLD occurrence and progression.


Gut Microbes ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shannon L Kelleher ◽  
Samina Alam ◽  
Olivia C Rivera ◽  
Shiran Barber-Zucker ◽  
Raz Zarivach ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document