Hierarchical protein self-assembly into dynamically controlled 2D nanoarrays via host–guest chemistry

2021 ◽  
Vol 57 (81) ◽  
pp. 10620-10623
Author(s):  
Yijia Li ◽  
Linlu Zhao ◽  
Hongwei Chen ◽  
Ruizhen Tian ◽  
Fei Li ◽  
...  

A dynamically reversible two-dimensional (2D) protein assembly system was designed based on host–guest interactions.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3310
Author(s):  
Shengda Liu ◽  
Jiayun Xu ◽  
Xiumei Li ◽  
Tengfei Yan ◽  
Shuangjiang Yu ◽  
...  

In the past few decades, enormous efforts have been made to synthesize covalent polymer nano/microstructured materials with specific morphologies, due to the relationship between their structures and functions. Up to now, the formation of most of these structures often requires either templates or preorganization in order to construct a specific structure before, and then the subsequent removal of previous templates to form a desired structure, on account of the lack of “self-error-correcting” properties of reversible interactions in polymers. The above processes are time-consuming and tedious. A template-free, self-assembled strategy as a “bottom-up” route to fabricate well-defined nano/microstructures remains a challenge. Herein, we introduce the recent progress in template-free, self-assembled nano/microstructures formed by covalent two-dimensional (2D) polymers, such as polymer capsules, polymer films, polymer tubes and polymer rings.


2019 ◽  
Vol 58 (30) ◽  
pp. 10173-10178 ◽  
Author(s):  
Hao Tian ◽  
Jieqiong Qin ◽  
Dan Hou ◽  
Qian Li ◽  
Chen Li ◽  
...  

2007 ◽  
Vol 204 (6) ◽  
pp. 1856-1862 ◽  
Author(s):  
Ching-Ling Hsu ◽  
Szu-Ming Chu ◽  
Kiwi Wood ◽  
Yi-Rong Yang

2009 ◽  
Vol 5 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Hareem T. Maune ◽  
Si-ping Han ◽  
Robert D. Barish ◽  
Marc Bockrath ◽  
William A. Goddard III ◽  
...  

2017 ◽  
Vol 3 (5) ◽  
pp. e184 ◽  
Author(s):  
Akihiko Ishiyama ◽  
Chika Sakai ◽  
Yuichi Matsushima ◽  
Satoru Noguchi ◽  
Satomi Mitsuhashi ◽  
...  

Objective:To determine the molecular factors contributing to progressive cavitating leukoencephalopathy (PCL) to help resolve the underlying genotype-phenotype associations in the mitochondrial iron-sulfur cluster (ISC) assembly system.Methods:The subjects were 3 patients from 2 families who showed no inconsistencies in either clinical or brain MRI findings as PCL. We used exome sequencing, immunoblotting, and enzyme activity assays to establish a molecular diagnosis and determine the roles of ISC-associated factors in PCL.Results:We performed genetic analyses on these 3 patients and identified compound heterozygosity for the IBA57 gene, which encodes the mitochondrial iron-sulfur protein assembly factor. Protein expression analysis revealed substantial decreases in IBA57 protein expression in myoblasts and fibroblasts. Immunoblotting revealed substantially reduced expression of SDHB, a subunit of complex II, and lipoic acid synthetase (LIAS). Levels of pyruvate dehydrogenase complex-E2 and α-ketoglutarate dehydrogenase-E2, which use lipoic acid as a cofactor, were also reduced. In activity staining, SDH activity was clearly reduced, but it was ameliorated in mitochondrial fractions from rescued myoblasts. In addition, NFU1 protein expression was also decreased, which is required for the assembly of a subset of iron-sulfur proteins to SDH and LIAS in the mitochondrial ISC assembly system.Conclusions:Defects in IBA57 essentially regulate NFU1 expression, and aberrant NFU1 ultimately affects SDH activity and LIAS expression in the ISC biogenesis pathway. This study provides new insights into the role of the iron-sulfur protein assembly system in disorders related to mitochondrial energy metabolism associated with leukoencephalopathy with cavities.


2018 ◽  
Vol 6 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Linlu Zhao ◽  
Yijia Li ◽  
Tingting Wang ◽  
Shanpeng Qiao ◽  
Xiumei Li ◽  
...  

A rapid and efficient strategy was developed to construct photocontrolled 2D protein nanosheets with an orderly arrangement.


Sign in / Sign up

Export Citation Format

Share Document