polymer tubes
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 22)

H-INDEX

18
(FIVE YEARS 2)

Fibers ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Johanna Dorothea Luck ◽  
Milad Bazli ◽  
Ali Rajabipour

Using fibre-reinforced polymers (FRP) in construction avoids corrosion issues associated with the use of traditional steel reinforcement, while seawater and sea sand concrete (SWSSC) reduces environmental issues and resource shortages caused by the production of traditional concrete. The paper gives an overview of the current research on the bond performance between FRP tube and concrete with particular focus on SWSSC. The review follows a thematic broad-to-narrow approach. It reflects on the current research around the significance and application of FRP and SWSSC and discusses important issues around the bond strength and cyclic behaviour of tubular composites. A review of recent studies of bond strength between FRP and concrete and steel and concrete under static or cyclic loading using pushout tests is presented. In addition, the influence of different parameters on the pushout test results are summarised. Finally, recommendations for future studies are proposed.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3310
Author(s):  
Shengda Liu ◽  
Jiayun Xu ◽  
Xiumei Li ◽  
Tengfei Yan ◽  
Shuangjiang Yu ◽  
...  

In the past few decades, enormous efforts have been made to synthesize covalent polymer nano/microstructured materials with specific morphologies, due to the relationship between their structures and functions. Up to now, the formation of most of these structures often requires either templates or preorganization in order to construct a specific structure before, and then the subsequent removal of previous templates to form a desired structure, on account of the lack of “self-error-correcting” properties of reversible interactions in polymers. The above processes are time-consuming and tedious. A template-free, self-assembled strategy as a “bottom-up” route to fabricate well-defined nano/microstructures remains a challenge. Herein, we introduce the recent progress in template-free, self-assembled nano/microstructures formed by covalent two-dimensional (2D) polymers, such as polymer capsules, polymer films, polymer tubes and polymer rings.


2021 ◽  
Vol 6 (53) ◽  
pp. eabd5383
Author(s):  
Diego R. Higueras-Ruiz ◽  
Michael W. Shafer ◽  
Heidi P. Feigenbaum

Compliant, biomimetic actuation technologies that are both efficient and powerful are necessary for robotic systems that may one day interact, augment, and potentially integrate with humans. To this end, we introduce a fluid-driven muscle-like actuator fabricated from inexpensive polymer tubes. The actuation results from a specific processing of the tubes. First, the tubes are drawn, which enhances the anisotropy in their microstructure. Then, the tubes are twisted, and these twisted tubes can be used as a torsional actuator. Last, the twisted tubes are helically coiled into linear actuators. We call these linear actuators cavatappi artificial muscles based on their resemblance to the Italian pasta. After drawing and twisting, hydraulic or pneumatic pressure applied inside the tube results in localized untwisting of the helical microstructure. This untwisting manifests as a contraction of the helical pitch for the coiled configuration. Given the hydraulic or pneumatic activation source, these devices have the potential to substantially outperform similar thermally activated actuation technologies regarding actuation bandwidth, efficiency, modeling and controllability, and practical implementation. In this work, we show that cavatappi contracts more than 50% of its initial length and exhibits mechanical contractile efficiencies near 45%. We also demonstrate that cavatappi artificial muscles can exhibit a maximum specific work and power of 0.38 kilojoules per kilogram and 1.42 kilowatts per kilogram, respectively. Continued development of this technology will likely lead to even higher performance in the future.


2021 ◽  
Vol 65 (2) ◽  
pp. 134-140
Author(s):  
Samira Liamani ◽  
Sahli Abderahmane

A pipe is a buried or aerial pipeline carrying goods, whether in liquid or gaseous form. Pipes are most often made from polymer tubes. These pipes prove to be subject to damage caused by a lack of material or crack thus calling for methods of repair or reinforcement.The objective of this study is to analyze by finite element analysis the presence of a horizontal crack in a high-density polyethylene pipe subjected to patch-corrected internal loading.Part of this study is devoted to analyzing the Von Misses stress distribution along a horizontal line, the applied loading type effect, the orientation of the fibers and the nature of the patch have been highlighted.The second part of our study is based on the calculation of the J-Integral where the same parameters of the first part were considered.The results clearly show that the mechanical characteristics of the composite must be optimized to provide an effective repair safely and allow relief of stress concentrations at the crack front.


2021 ◽  
Vol 282 ◽  
pp. 128833
Author(s):  
Anatoly Nikolayevich Boyandin ◽  
Anna Alekseevna Sukhanova ◽  
Viktoriya Viktorovna Orlova ◽  
Alexander Ivanovich Volchek

2020 ◽  
Vol 275 ◽  
pp. 109879
Author(s):  
Ivi Nascimento ◽  
Lucas Calado ◽  
Maria Eduarda Duncan ◽  
Bruna Trindade ◽  
Leandro Sphaier ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document