Enzyme-like catalysis by single chain nanoparticles that use transition metal cofactors

2022 ◽  
Author(s):  
Thao Mee Xiong ◽  
Edzna Garcia ◽  
Junfeng Chen ◽  
Lingyang Zhu ◽  
Ariale Alzona ◽  
...  

We report a modular approach in which a noncovalently cross-linked single chain nanoparticle (SCNP) selectively binds catalyst “cofactors” and substrates to increase both the catalytic activity of a Cu-catalyzed alkyne-azide...

2020 ◽  
Author(s):  
Jacob Artz ◽  
David Mulder ◽  
Michael Ratzloff ◽  
John Peters ◽  
Paul King

Abstract Reactivity of transition metal catalysts is controlled by covalent and non-covalent interactions that tune thermodynamic properties including hydricity. Hydricity is critical to catalytic activity and for modulating the reduction or oxidation of chemical compounds. Likewise, enzymes can employ transition metal cofactors and use metal-hydride intermediates tuned by protein frameworks to selectively control reactivity. One example, the [FeFe]-hydrogenases, catalyze reversible H2 activation with H2 oxidation to H+ reduction ratios spanning ~107 in rate, offering a model to determine the extent that hydricity controls reactivity. To address this question, the hydricity of the catalytic H cluster of two [FeFe]-hydrogenases, CpI and CpII, were compared. We show that for CpI, the higher rates of H+ reduction correspond to a more hydridic H cluster, whereas CpII, which strongly favors H2 oxidation, has a less hydridic H cluster. The results demonstrate that enzymes manipulate metal cofactor hydricity to enable an extraordinary range of chemical reactivity.


1981 ◽  
Vol 46 (10) ◽  
pp. 2354-2363 ◽  
Author(s):  
Svatomír Kmošták ◽  
Karel Setínek

The catalytic activity of sulphonated macroporous styrene-divinylbenzene copolymers, the exchange capacity of which was neutralized from 30, 50 and 80% by Fe(III) ions and from 30% by Na ions and that of Wofatit Y-37 ion exchanger neutralized from 10% of its total exchange capacity by several transition metal ions and by sodium has been studied in isomerisation of cyclohexene and dehydration of 1-propanol in the gas phase at 130 °C. It was demonstrated that in both reactions transition metal ions exhibit additional effect to the expected neutralization of the polymer acid groups. In the case of cyclohexene isomerization, this effect depends on the degree of crosslinking of polymer mass of the catalyst. Such dependence has not been, however, observed in dehydration of 1-propanol. The type of transition metal ions did not exhibit any significant effect on the catalytic activity of the polymer catalysts studied.


2019 ◽  
Vol 7 (9) ◽  
pp. 4971-4976 ◽  
Author(s):  
Tongtong Wang ◽  
Xiaosong Guo ◽  
Jingyan Zhang ◽  
Wen Xiao ◽  
Pinxian Xi ◽  
...  

We give a systematic study of the HER catalytic activity of transition metal doped NiS2 by first principles calculations and experiments.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jianchen Lu ◽  
Gefei Niu ◽  
Xiao Ren ◽  
De-Liang Bao ◽  
Hui Chen ◽  
...  

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are emerging as new electrocatalysts and photocatalysts, in which edge sites of 2D TMDs are highly catalytic activity and are thus favored at the...


Sign in / Sign up

Export Citation Format

Share Document