scholarly journals Reducing Crystal Structure Overprediction of Ibuprofen with Large Scale Molecular Dynamics Simulations

CrystEngComm ◽  
2021 ◽  
Author(s):  
Nicholas Francesco Francia ◽  
Louise Price ◽  
Matteo Salvalaglio

The control of the crystal form is a central issue in the pharmaceutical industry. The identification of putative polymorphs through Crystal Structure Prediction (CSP) methods is based on lattice energy...

2021 ◽  
Author(s):  
Nicholas Francia ◽  
Louise Price ◽  
Matteo Salvalaglio

<p>The control of the crystal form is a central issue in the pharmaceutical industry. The identification of putative polymorphs through Crystal Structure Prediction (CSP) methods is based on lattice energy calculations, which are known to significantly over-predict the number of plausible crystal structures. A valuable tool to reduce overprediction is to employ physics-based, dynamic simulations to coalesce lattice energy minima separated by small barriers into a smaller number of more stable geometries once thermal effects are introduced. Molecular dynamics simulations and enhanced sampling methods can be employed in this context to simulate crystal structures at finite temperature and pressure. </p><p>Here we demonstrate the applicability of approaches based on molecular dynamics to systematically process realistic CSP datasets containing several hundreds of crystal structures. The system investigated is ibuprofen, a conformationally flexible active pharmaceutical ingredient that crystallises both in enantiopure forms and as a racemic mixture. By introducing a hierarchical approach in the analysis of finite-temperature supercell configurations, we can post-process a dataset of 555 crystal structures, identifying 65% of the initial structures as labile, while maintaining all the experimentally known crystal structures in the final, reduced set. Moreover, the extensive nature of the initial dataset allows one to gain quantitative insight into the persistence and the propensity to transform of crystal structures containing common hydrogen-bonded intermolecular interaction motifs.</p>


2021 ◽  
Author(s):  
Nicholas Francia ◽  
Louise Price ◽  
Matteo Salvalaglio

<p>The control of the crystal form is a central issue in the pharmaceutical industry. The identification of putative polymorphs through Crystal Structure Prediction (CSP) methods is based on lattice energy calculations, which are known to significantly over-predict the number of plausible crystal structures. A valuable tool to reduce overprediction is to employ physics-based, dynamic simulations to coalesce lattice energy minima separated by small barriers into a smaller number of more stable geometries once thermal effects are introduced. Molecular dynamics simulations and enhanced sampling methods can be employed in this context to simulate crystal structures at finite temperature and pressure. </p><p>Here we demonstrate the applicability of approaches based on molecular dynamics to systematically process realistic CSP datasets containing several hundreds of crystal structures. The system investigated is ibuprofen, a conformationally flexible active pharmaceutical ingredient that crystallises both in enantiopure forms and as a racemic mixture. By introducing a hierarchical approach in the analysis of finite-temperature supercell configurations, we can post-process a dataset of 555 crystal structures, identifying 65% of the initial structures as labile, while maintaining all the experimentally known crystal structures in the final, reduced set. Moreover, the extensive nature of the initial dataset allows one to gain quantitative insight into the persistence and the propensity to transform of crystal structures containing common hydrogen-bonded intermolecular interaction motifs.</p>


Author(s):  
Pawanpreet Singh ◽  
Renu Chadha

Molecular simulation is increasingly used by medicinal chemists in the process and product development. Reliable computational predictions are of great value not only for the design of an active pharmaceutical ingredient with novel properties but also for the avoidance of an undesirable change of form in the late stages of development of an industrially important molecule. In the pharmaceutical industry, drug polymorphism can be a critical problem and is the subject of various regulatory considerations. This contribution tried to review the fuzzy frontiers between the chemical structure of the molecule and its crystal energy landscape with a particular focus on the crystal structure prediction (csp) methodology to complement polymorph screening. A detailed application of csp in the pharmaceutical industry is illustrated on ciprofloxacin; describing its putative polymorphs. This approach successfully identifies the known crystal form within this class, as well as a large number of other low-energy structures. The performance of the approach is discussed in terms of both the quality of the results and computational aspects. csp methods are now being used as part of the interdisciplinary range of studies to establish the range of solid forms of a molecule. Moreover, further methodological improvements aimed at increasing the accuracy of the predictions and at broadening the range of molecules i.e. cocrystals, salts and solvates.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 734
Author(s):  
Aija Trimdale ◽  
Anatoly Mishnev ◽  
Agris Bērziņš

The arrangement of hydroxyl groups in the benzene ring has a significant effect on the propensity of dihydroxybenzoic acids (diOHBAs) to form different solid phases when crystallized from solution. All six diOHBAs were categorized into distinctive groups according to the solid phases obtained when crystallized from selected solvents. A combined study using crystal structure and molecule electrostatic potential surface analysis, as well as an exploration of molecular association in solution using spectroscopic methods and molecular dynamics simulations were used to determine the possible mechanism of how the location of the phenolic hydroxyl groups affect the diversity of solid phases formed by the diOHBAs. The crystal structure analysis showed that classical carboxylic acid homodimers and ring-like hydrogen bond motifs consisting of six diOHBA molecules are prominently present in almost all analyzed crystal structures. Both experimental spectroscopic investigations and molecular dynamics simulations indicated that the extent of intramolecular bonding between carboxyl and hydroxyl groups in solution has the most significant impact on the solid phases formed by the diOHBAs. Additionally, the extent of hydrogen bonding with solvent molecules and the mean lifetime of solute–solvent associates formed by diOHBAs and 2-propanol were also investigated.


2016 ◽  
Vol 34 (4) ◽  
pp. 041509 ◽  
Author(s):  
Daniel Edström ◽  
Davide G. Sangiovanni ◽  
Lars Hultman ◽  
Ivan Petrov ◽  
J. E. Greene ◽  
...  

2006 ◽  
Vol 62 (4) ◽  
pp. 642-650 ◽  
Author(s):  
Harriott Nowell ◽  
Christopher S. Frampton ◽  
Julie Waite ◽  
Sarah L. Price

The commercially available peptide coupling reagent 1-hydroxy-7-azabenzotriazole has been shown to crystallize in two polymorphic forms. The two polymorphs differ in their hydrogen-bonding motif, with form I having an R_2^2(10) dimer motif and form II having a C(5) chain motif. The previously unreported form II was used as an informal blind test of computational crystal structure prediction for flexible molecules. The crystal structure of form II has been successfully predicted blind from lattice-energy minimization calculations following a series of searches using a large number of rigid conformers. The structure for form II was the third lowest in energy with form I found as the global minimum, with the energy calculated as the sum of the ab initio intramolecular energy penalty for conformational distortion and the intermolecular lattice energy which is calculated from a distributed multipole representation of the charge density. The predicted structure was sufficiently close to the experimental structure that it could be used as a starting model for crystal structure refinement. A subsequent limited polymorph screen failed to yield a third polymorphic form, but demonstrated that alcohol solvents are implicated in the formation of the form I dimer structure.


Nano Letters ◽  
2017 ◽  
Vol 17 (10) ◽  
pp. 5919-5924 ◽  
Author(s):  
Zheyong Fan ◽  
Petri Hirvonen ◽  
Luiz Felipe C. Pereira ◽  
Mikko M. Ervasti ◽  
Ken R. Elder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document