Adsorption and reaction pathways of 7-octenoic acid on copper

2021 ◽  
Vol 23 (10) ◽  
pp. 5834-5844
Author(s):  
Robert Bavisotto ◽  
Resham Rana ◽  
Nicholas Hopper ◽  
Dustin Olson ◽  
Wilfred T. Tysoe

The surface chemistry of 7-octenoic acid was studied on a clean copper substrate in ultrahigh vacuum using a combination of surface science techniques and is supplemented by first-principles density functional theory calculations.

2016 ◽  
Vol 4 (29) ◽  
pp. 11498-11506 ◽  
Author(s):  
Taehun Lee ◽  
Yonghyuk Lee ◽  
Woosun Jang ◽  
Aloysius Soon

Using first-principles density-functional theory calculations, we investigate the advantage of using h-WO3 (and its surfaces) over the larger band gap γ-WO3 phase for the anode in water splitting. We demonstrate that h-WO3 is a good alternative anode material for optimal water splitting efficiencies.


2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


2001 ◽  
Vol 670 ◽  
Author(s):  
Michael Haverty ◽  
Atsushi Kawamoto ◽  
Gyuchang Jun ◽  
Kyeongjae Cho ◽  
Robert Dutton

ABSTRACTBulk Density Functional Theory calculations were performed on Hf and Zr substitutions for Al in κ-alumina. The lowest energy configuration found was an octahedrally coordinated Zr site. Zr dissolution was favorable with an enthalpy of -2eV/unit cell for forming Al1.875Zr0.125O3 from pure Zr and κ-alumina. Hf and Zr substitution for Al atoms introduced empty d-states below the conduction band edge reducing the Eg of pure κ-alumina (7.5eV) to 6.4-5.9eV. The edge of the valence band however remained fixed by the O p-state character. The substitution of Hf and Zr into the alumina structure may lead to a higher dielectric constant, but will also reduce Eg and result in a trade off in tunneling currents in devices.


Author(s):  
Javaria Batool ◽  
Syed Muhammad Alay-e-Abbas ◽  
Gustav Johansson ◽  
Waqas Zulfiqar ◽  
Muhammad Arsam Danish ◽  
...  

The thermodynamic, structural, magnetic and electronic properties of pristine and intrinsic vacancy defect containing topological Dirac semimetal Ba3SnO are studied using first-principles density functional theory calculations. The thermodynamic stability of...


2019 ◽  
Vol 7 (39) ◽  
pp. 12306-12311 ◽  
Author(s):  
He-Ping Su ◽  
Shu-Fang Li ◽  
Yifeng Han ◽  
Mei-Xia Wu ◽  
Churen Gui ◽  
...  

First-principles density functional theory calculations, for the first time, was used to predict the Mg3TeO6-to-perovskite type phase transition in Mn3TeO6 at around 5 GPa.


2019 ◽  
Vol 21 (45) ◽  
pp. 25397-25405
Author(s):  
Shukai Yao ◽  
Pilsun Yoo ◽  
Peilin Liao

First principles density functional theory calculations were performed to identify transition metal perovskites CaFeO3, SrFeO3, BaFeO3 and SmMnO3 as promising candidates with large band gap opening upon hydrogen doping.


RSC Advances ◽  
2016 ◽  
Vol 6 (54) ◽  
pp. 49214-49220 ◽  
Author(s):  
Xiaofeng Li ◽  
Junyi Du

Using an unbiased structure search method based on particle-swarm optimization algorithms in combination with density functional theory calculations, we investigate the phase stability and electronic properties of NbB3 under high pressures.


Sign in / Sign up

Export Citation Format

Share Document