Computational prediction of Au(i)–Pb(ii) bonding in coordination complexes and study of the factors affecting the formation of Au(i)–E(ii) (E = Ge, Sn, Pb) covalent bonds

Author(s):  
José M. López-de-Luzuriaga ◽  
Miguel Monge ◽  
M. Elena Olmos ◽  
María Rodríguez-Castillo ◽  
Alba Sorroche

Computational studies on Au(i)–E(ii) in [R3PAu–(ECl3)] (E = Ge, Sn, Pb) model systems indicate the covalent dative nature from the [ECl3]− metalloligands to Au(i) fragments and predict the existence of Au(i)–Pb(ii) bonds using electron widthdrawing PR3 ligands.

1985 ◽  
Vol 26 (9) ◽  
pp. 1102-1111 ◽  
Author(s):  
A Kibe ◽  
M A Dudley ◽  
Z Halpern ◽  
M P Lynn ◽  
A C Breuer ◽  
...  

2020 ◽  
Vol 59 (17) ◽  
pp. 12884-12894
Author(s):  
Srabani S. Mishra ◽  
Srinath V. K. Kompella ◽  
Shobhana Krishnaswamy ◽  
Sundaram Balasubramanian ◽  
Dillip K. Chand

1978 ◽  
Vol 43 (3) ◽  
pp. 673-676 ◽  
Author(s):  
S. H. LEE ◽  
R. G. CASSENS ◽  
W. C. WINDER ◽  
O. R. FENNEMA

2021 ◽  
Author(s):  
Rahul Banerjee ◽  
Kalipada Koner ◽  
Shayan Karak ◽  
Sharath Kandambeth ◽  
Suvendu Karak ◽  
...  

Abstract Despite the noteworthy progress made in the nanotubular architectures with well-defined lengths and diameter, the synthesis of a purely covalent bonded organic nanotube, so far, proved to be elusive. Our work includes a hitherto unavailable structure, "Covalent Organic Nanotubes (CONTs)," to the repertoire. Strong covalent bonds between C, N, and O imparts high thermal and chemical stability of CONTs. This novel bottom-up approach provides an edge over the carbon nanotubes (CNTs) in functionalization, synthetic conditions, and porosity. CONT-1 exhibits a BET surface area of 321 m2g-1. These flexible CONTs intertwine with each other. The computational studies establish the role of solvent as the critical driving force for this type of convolution. Upon ultrasonication, the intertwined CONT-1 coil to form the toroidal superstructure.


2021 ◽  
Author(s):  
Paola Benavides ◽  
Monica A. Gordillo ◽  
Ashok Yadav ◽  
M. Andrey Joaqui-Joaqui ◽  
Sourav Saha

Thermodynamically favored heteroleptic coordination of one aza- and another oxo-coordinating ligand with Pt(II) ions yield tricomponent supramolecular coordination complexes (SCCs) that have much greater structural complexity and functional diversity than the traditional bicomponent SCCs containing only one of the ligands. Herein, we demonstrate that heteroleptic coordination of tetrapyridyl porphyrins (M¢TPP, M¢ = Zn or H2) and various dicarboxylate ligands (XDC) having different lengths and rigidity with cis- (Et3P)2PtII corners actually yields bow tie (⋈)-shaped tricomponent [{cis-(Et3P)2Pt}4(M¢TPP)(XDC)2] 4+ complexes featuring a M¢TPP core and two parallel XDC linkers held together by four heteroligated PtII(N,O) corners. Although previous reports have claimed that the self-assembly of these three components produced tetragonal prisms having two cofacial M¢TPP planes connected by four XDC linkers via eight PtII(N,O) corners, our extensive 1 H, 31P, and 2D NMR, ESI-MS, X-ray crystallographic, and computational studies unequivocally demonstrated that in reality, no such prism was formed because instead of connecting two cofacial M¢TPP ligands, the XDC linkers actually bridged two adjacent pyridyl termini of an M¢TPP ligand via shared PtII(N,O) corners, forming bow tie complexes. In addition to direct crystallographic evidence, the NMR spectra of these complexes revealed that the M¢TPP ligands contained two distinct pyrrole protons (4 each)—those located inside the triangles were shielded by and coupled to adjacent XDC linkers, whereas the exposed ones were not—an unmistakable sign of their bow tie structures. Thus, this work not only unveiled novel bow tie-shaped coordination complexes, but also accurately defined the actual structures and compositions of M¢TPP-based tricomponent SCCs.


2021 ◽  
Author(s):  
Paola Benavides ◽  
Monica A. Gordillo ◽  
Ashok Yadav ◽  
M. Andrey Joaqui-Joaqui ◽  
Sourav Saha

Thermodynamically favored heteroleptic coordination of Pt(II) ions with one aza- and another oxo-coordinating ligand yield tricomponent supramolecular coordination complexes (SCCs), which possess much greater structural complexity and functional diversity than traditional bicomponent SCCs containing only one of the ligands. Through X-ray crystallography, 1H, 31P, and 2D NMR spectroscopies, mass spectrometry, and computational studies, herein, we demonstrated that heteroleptic coordination of tetrapyridyl porphyrins (MTPP, M = Zn or H2) and various dicarboxylate ligands (XDC) having different lengths and rigidity with cis-(Et3P)2PtII corners yielded bow-tie (⋈)-shaped tricomponent [{cis-(Et3P)2Pt}4(MTPP)(XDC)2]4+ complexes featuring a MTPP core and two parallel XDC linkers held together by four heteroligated PtII(N,O) corners and ruled out the MTPP-based tetragonal prism formation. Irrespective of the rigidity and length of the XDC linkers within a certain range (~7–11 Å), they intramolecularly bridged two adjacent pyridyl tips of an MTPP ligand via PtII(N,O) corners, which led to the formation of bow-tie complexes instead of prisms. This happened because the angles of projection between the adjacent pyridyl rings of MTPP cores adapted to accommodate the bridging XDC linkers having different lengths, and the bow-tie formation was entropically favored over tetragonal prisms. This work not only unveiled novel bow-tie-shaped coordination complexes, but also accurately defined the actual structures and compositions of MTPP-based tricomponent SCCs. Furthermore, a representative bow-tie complex containing an electron-rich ZnTPP core selectively formed a charge-transfer (CT) complex with highly electron deficient 1,4,5,8,9,12-hexaazatriphenylene-2,3,6,7,10,11-heaxacarbonitrile (HATHCN) but not with π-donors like pyrene.


Sign in / Sign up

Export Citation Format

Share Document