scholarly journals 1st Row Transition Metal Aluminylene Complexes: Preparation, Properties and Bonding Analysis

2021 ◽  
Author(s):  
Mark Richard Crimmin ◽  
Richard Y Kong

The synthesis and spectroscopic characterisation of eight new first-row transition metal (M = Cr, Mn, Fe, Co, Cu) aluminylene complexes is reported. DFT and ab initio calculations have been used...

2021 ◽  
Author(s):  
Richard Y Kong ◽  
Mark Crimmin

<i>The synthesis and spectroscopic characterisation of eight new first-row transition metal (M = Cr, Mn, Fe, Co, Cu) aluminylene complexes is reported. DFT and ab<b> </b>initio calculations have been used to provide detailed insight into the metal–metal bond. The σ-donation and π-backdonation properties of the aluminylene ligand are evaluated via NBO and ETS-NOCV calculations. These calculations reveal that these ligands are strong σ-donors but also competent π-acceptors. These properties are not fixed but vary in response to the nature of the transition metal centre, suggesting that aluminylene fragments can modulate their bonding to accommodate both electron-rich and electron-poor transition metals. Ab initio<b> </b>DLPNO-CCSD(T) calculations show that dispersion plays an important role in stabilising these complexes. Both short-range and long-range dispersion interactions are identified. These results will likely inform the design of next-generation catalysts based on aluminium metalloligands. </i>


2021 ◽  
Author(s):  
Richard Y Kong ◽  
Mark Crimmin

<i>The synthesis and spectroscopic characterisation of eight new first-row transition metal (M = Cr, Mn, Fe, Co, Cu) aluminylene complexes is reported. DFT and ab<b> </b>initio calculations have been used to provide detailed insight into the metal–metal bond. The σ-donation and π-backdonation properties of the aluminylene ligand are evaluated via NBO and ETS-NOCV calculations. These calculations reveal that these ligands are strong σ-donors but also competent π-acceptors. These properties are not fixed but vary in response to the nature of the transition metal centre, suggesting that aluminylene fragments can modulate their bonding to accommodate both electron-rich and electron-poor transition metals. Ab initio<b> </b>DLPNO-CCSD(T) calculations show that dispersion plays an important role in stabilising these complexes. Both short-range and long-range dispersion interactions are identified. These results will likely inform the design of next-generation catalysts based on aluminium metalloligands. </i>


1993 ◽  
Vol 90 ◽  
pp. 249-254 ◽  
Author(s):  
C Wolverton ◽  
M Asta ◽  
S Ouannasser ◽  
H Dreyssé ◽  
D de Fontaine

ACS Omega ◽  
2021 ◽  
Author(s):  
Muhammad Fahad Arshad ◽  
Ling-Nan Wu ◽  
Achraf El Kasmi ◽  
Wu Qin ◽  
Zhen-Yu Tian

Author(s):  
Shin Nakamura ◽  
Matteo Capone ◽  
Giuseppe Mattioli ◽  
Leonardo Guidoni

Water-oxidizing metal-(hydr)oxo catalyst films can be generally deposited and activated by applying a positive electrochemical potential to suitable starting aqueous solutions. Here, we used ab initio simulations based on density...


Nanoscale ◽  
2020 ◽  
Author(s):  
Shashikant Kumar ◽  
David Codony ◽  
Irene Arias ◽  
Phanish Suryanarayana

We study the flexoelectric effect in fifty-four select atomic monolayers using ab initio Density Functional Theory (DFT). Specifically, considering representative materials from each of Group III monochalcogenides, transition metal dichalcogenides...


Sign in / Sign up

Export Citation Format

Share Document