Highly uniform Platanus fruit-like CuCo2S4 microsphere as electrode material for high performance lithium-ion batteries and supercapacitors

2021 ◽  
Author(s):  
Baole Guan ◽  
Yu-Shen Zhao ◽  
Nan Zhang ◽  
Junhong Zhang ◽  
Ting Sun ◽  
...  

The platanus-like CuCo2S4 microspheres were fabricated by using a facile hydrothermal following by a sulfidation process. As a lithium storage material, it delivers an outstanding initial specific capacity of 1119.3...

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 24
Author(s):  
Ji Yan ◽  
Xin-Bo Chang ◽  
Xiao-Kai Ma ◽  
Heng Wang ◽  
Yong Zhang ◽  
...  

Phosphorization of metal oxides/hydoxides to promote electronic conductivity as a promising strategy has attracted enormous attention for improving the electrochemical properties of anode material in lithium ion batteries. For this article, selective phosphorization from NiCo2O4 to NiO/Ni2Co4P3 microspheres was realized as an efficient route to enhance the electrochemical lithium storage properties of bimetal Ni-Co based anode materials. The results show that varying phosphorizaed reagent amount can significantly affect the transformation of crystalline structure from NiCo2O4 to intermediate NiO, hybrid NiO/Ni2Co4P3, and, finally, to Ni2Co4P3, during which alterated sphere morphology, shifted surface valance, and enhanced lithium-ion storage behavior are detected. The optimized phosphorization with 1:3 reagent mass ratio can maintain the spherical architecture, hold hybrid crystal structure, and improve the reversibly electrochemical lithium-ion storage properties. A specific capacity of 415 mAh g−1 is achieved at 100 mA g−1 specific current and maintains at 106 mAh g−1 when the specific current increases to 5000 mA g−1. Even after 200 cycles at 500 mA g−1, the optimized electrode still delivers 224 mAh g−1 of specific capacity, exhibiting desirable cycling stability. We believe that understanding of such selective phosphorization can further evoke a particular research enthusiasm for anode materials in lithium ion battery with high performances.


2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040011
Author(s):  
Bowen Dong ◽  
Bingbing Deng ◽  
Yangai Liu

Silicon, an anode material for lithium ion batteries, has the highest theoretical specific capacity ([Formula: see text] mAh/g). The actual lithium storage capacity of [Formula: see text] mAh/g is about 10 times that of the graphite anode materials class. This study involves magnesium heat reduction of the SiO2 preparation of silicon carbon composites. The Si/SiC composite shows a high initial specific capacity of 1406.7 mAh/g with a current density of 0.1 A/g. The morphology and pore size inherited from the SiO2 aerogel counteracts the volume expansion during the lithiation/delithiation process. This paper provides an articulate methodology for designing silicon anode material for high-performance rechargeable lithium-ion batteries.


2015 ◽  
Vol 3 (45) ◽  
pp. 22552-22556 ◽  
Author(s):  
Chuanjian Zhang ◽  
Fenglian Chai ◽  
Lin Fu ◽  
Pu Hu ◽  
Shuping Pang ◽  
...  

A Cu3Ge/Ge@G aerogel was synthesized via a simple pyrolysis route and directly employed as a high performance anode for lithium-ion batteries.


2021 ◽  
pp. 2150031
Author(s):  
Hai Li ◽  
Chunxiang Lu

As anode material for lithium-ion batteries, graphite has the disadvantage of relatively low specific capacity. In this work, a simple yet effective strategy to overcome the disadvantages by using a composite of flake graphite (FG) and small-sized graphene (SG) has been developed. The FG/SG composite prepared by dispersing FG and SG (90:10 w/w) in ethanol and drying delivers much higher specific capacity than that of individual component except for improved rate capability. More surprisingly, FG/SG composite delivers higher reversible capacity than its theoretical value calculated according to the theoretical capacities of graphite and graphene. Therefore, a synergistic effect between FG and SG in lithium storage is clearly discovered. To explain it, we propose a model that abundant nanoscopic cavities were formed due to physical adhesion between FG and SG and could accommodate extra lithium.


CrystEngComm ◽  
2020 ◽  
Vol 22 (21) ◽  
pp. 3588-3597 ◽  
Author(s):  
Xiangchen Zhao ◽  
Guiling Niu ◽  
Hongxun Yang ◽  
Jiaojiao Ma ◽  
Mengfei Sun ◽  
...  

New MIL-88A@polyoxometalates microrods have been constructed via a simple one-step hydrothermal method, exhibiting the improved lithium storage capacity, rate performance and cycling stability.


2020 ◽  
Vol 4 (9) ◽  
pp. 4780-4788 ◽  
Author(s):  
Qiang Ma ◽  
Jiakang Qu ◽  
Xiang Chen ◽  
Zhuqing Zhao ◽  
Yan Zhao ◽  
...  

Low-cost feedstocks and rationally designed structures are the keys to determining the lithium-storage performance and practical applications of Si-based anodes for lithium-ion batteries (LIBs).


2020 ◽  
Vol 49 (24) ◽  
pp. 8136-8142
Author(s):  
Wujie Dong ◽  
Xieyi Huang ◽  
Yan Jin ◽  
Miao Xie ◽  
Wei Zhao ◽  
...  

An artificial solid electrolyte interphase layer using lithium polyacrylate on spinel LiMn2O4 enables fast and durable aqueous lithium storage.


2020 ◽  
Vol 7 (13) ◽  
pp. 2831-2837
Author(s):  
Qingbo Xia ◽  
Pierre J. P. Naeyaert ◽  
Maxim Avdeev ◽  
Siegbert Schmid ◽  
Hongwei Liu ◽  
...  

2012 ◽  
Vol 1440 ◽  
Author(s):  
Jiajia Tan ◽  
Ashutosh Tiwari

ABSTRACTLi2FeP2O7 is a newly developed polyanionic cathode material for high performance lithium ion batteries. It is considered very attractive due to its large specific capacity, good thermal and chemical stability, and environmental benignity. However, the application of Li2FeP2O7 is limited by its low ionic and electronic conductivities. To overcome the above problem, a solution-based technique was successfully developed to synthesize Li2FeP2O7 powders with very fine and uniform particle size (< 1 μm), achieving much faster kinetics. The obtained Li2FeP2O7 powders were tested in lithium ion batteries by measurements of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge cycling. We found that the modified Li2FeP2O7 cathode could maintain a relatively high capacity even at fast discharge rates.


Sign in / Sign up

Export Citation Format

Share Document