Efficient improvement in non-enzymatic glucose detection induced by the hollow prism-like NiCo2S4 electrocatalyst

2021 ◽  
Author(s):  
Dandan Chu ◽  
Li Yan ◽  
Qiwen Chen ◽  
Xue-Qiang Chu ◽  
Danhua Ge ◽  
...  

The hollow prism-like NiCo2S4 mateials (NiCo2S4 HNPs) were successfully fabricated by a two-step method. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and a powder X-ray diffraction (XRD) confirmed the...

2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2011 ◽  
Vol 412 ◽  
pp. 5-8 ◽  
Author(s):  
Ying Zhang ◽  
Ai Chen ◽  
Hai Rong Wang ◽  
Ze Song Li ◽  
Ying Ping Shen

The present article reports the results of studies related to the synthesis of nanocrystalline ceria powder by combustion process using salt combustion aid. Cerium nitrate as oxidant and urea as fuel were used as reagents, Sodium Chloride was compared as combustion aid. The phase analysis and particle size were compared. The product was characterized by X-ray diffraction, Scanning electron microscopy and Transmission electron microscopy. The results showed that employment of starting fuel with combustion aid resulted in synthesizing nanocrystalline ceria powder with fine agglomerates. By using combustion aid, the energetics of the combustion reaction and particle characteristics have been changed.


1997 ◽  
Vol 3 (4) ◽  
pp. 381-396
Author(s):  
S. Chandra ◽  
D. Van Gemert

Abstract Interior plaster from the Abbot's Palace of the Abbey of Villers-la-Ville, Brabant Wallon province, Belgium has been investigated. It is done by using chemical analysis, x-ray diffraction analysis, scanning electron microscopy, energy dispersive electron spectroscopy, and transmission electron microscopy. It is found that the rendering was made with lime rich mortar and animal hairs. The sand used was very fine and the hairs were very short. The solid constituents and the hairs were uniformly dispersed, which could have been obtained by the addition of some other natural polymer, containing protein.


2011 ◽  
Vol 347-353 ◽  
pp. 615-620
Author(s):  
Ying Jia ◽  
Tian Tian Liu ◽  
Cheng Luo

Ce0.67Zr0.33O2 (CZ) nanorods are successfully synthesized by glycol-assisted hydrothermal method using zirconium oxychloride, cerium nitrate and urea, with the presence of sodium hypochlorite. The products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectra. The catalytic oxidation characters about Pd/CZ three-way catalyst (TWC) prepared with different loads of Pd are also investigated. The results show that the as-prepared Pd/CZ has excellent catalytic oxidation character to CO.


2011 ◽  
Vol 110-116 ◽  
pp. 547-552 ◽  
Author(s):  
Yu Xin Wang ◽  
Jing Xu ◽  
Xing Guo Cheng ◽  
Hong Fang Xu ◽  
Li Jun Liu

ZnO nanostructures with different morphology have been successfully fabricated by a simple relative low temperature approach at 90 °C for 5 h without surfactant assistance. These structures can be easily tailed using varied concentrations of sodium hydroxide (NaOH) and different amounts of the hydrazine hydrate (N2H4·H2O). X-ray diffraction (XRD) result proves the formation of ZnO with wurtzite structure. Microstructure as revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicates that the rod-like and chrysanthemum-like ZnO nanostructures contain many radial nanorods, which grow along the [0001] direction. Furthermore, the as-prepared ZnO nanomaterials exhibit high activity on the photo-catalytic degradation of typical persistent organic pollutants (POPs), indicating that they are promising as semiconductor photo-catalysts.


2008 ◽  
Vol 8 (3) ◽  
pp. 1183-1190 ◽  
Author(s):  
Chunxia Li ◽  
Cuikun Lin ◽  
Xiaoming Liu ◽  
Jun Lin

Nanostructured CaWO4, CaWO4:Eu3+, and CaWO4:Tb3+ phosphor particles were synthesized via a facile sonochemical route. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence, low voltage cathodoluminescence spectra, and photoluminescence lifetimes were used to characterize the as-obtained samples. The X-ray diffraction results indicate that the samples are well crystallized with the scheelite structure of CaWO4. The transmission electron microscopy and field emission scanning electron microscopy images illustrate that the powders consist of spherical particles with sizes from 120 to 160 nm, which are the aggregates of even smaller nanoparticles ranging from 10 to 20 nm. Under UV light or electron beam excitation, the CaWO4 powder exhibited a blue emission band with a maximum at 430 nm originating from the WO2−4 groups, while the CaWO4:Eu3+ powder showed red emission dominated by 613 nm ascribed to the 5D0 → 7F2 of Eu3+, and the CaWO4:Tb3+ powders showed emission at 544 nm, ascribed to the 5D4 → 7F5 transition of Tb3+. The PL excitation and emission spectra suggest that the energy is transferred from WO2−4 to Eu3+CaWO4:Eu3+ and to Tb3+ in CaWO4:Tb3+. Moreover, the energy transfer from WO2−4 to Tb3+ in CaWO4:Tb3+ is more efficient than that from WO2−4 to Eu3+ in CaWO4:Eu3+. This novel and efficient pathway could open new opportunities for further investigating the novel properties of tungstate materials.


2011 ◽  
Vol 10 (06) ◽  
pp. 1209-1214 ◽  
Author(s):  
HUIZHAO ZHUANG ◽  
JIE WANG ◽  
XIAOKAI ZHANG ◽  
JUNLIN LI

Gallium nitride ( GaN ): nanostructured materials are synthesized by ammoniating Ga2O3/Nb films which are deposited in turn on Si(111) substrates at 900°C. The morphology and structure of the nanostructured materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Optical property of GaN nanostructured materials are analyzed by photoluminescence (PL). The results demonstrated that as-synthesized nanostructured materials are hexagonal wurtzite-structured. Ammoniating time of the samples has an evident influence on the morphology of GaN nanostructured materials synthesized by this method. The PL spectra indicate good emission property for the nanostructured materials. Finally, the growth mechanism is also briefly discussed.


2010 ◽  
Vol 03 (03) ◽  
pp. 173-176 ◽  
Author(s):  
YIBO WANG ◽  
HUAJUN SUN ◽  
JING ZHOU ◽  
BO LI ◽  
CHENGYONG ZHANG ◽  
...  

Highly oriented Bi2Fe4O9 nanosheets can be fabricated with Fe(NO3)3 ⋅ 9H2O and Bi(NO3)3 ⋅ 5H2O using the low-temperature hydrothermal method. The as-prepared powders are characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), which exhibit an excellent orientation along the (00l) planes. The leakage current density and dielectric properties of the nanosheet samples are measured by Radiant Precision Workstation and HP4291B Impedance Analyzer, respectively. The effects of NaOH concentration on the phase transformation, sheet size and morphologies of the Bi2Fe4O9 crystallites are studied in this paper.


2013 ◽  
Vol 742 ◽  
pp. 448-451
Author(s):  
Ming Feng Wang ◽  
Tou Gen Liao ◽  
Bao Kun Zhu ◽  
Yao Wang ◽  
Yan Qing Duan ◽  
...  

Mesoporous TiO2 with anatase crystalline structure (MTiO2) has been synthesized by using Lac Red as template. The synthesized mesoporous titania samples were characterized by a combination of various physicochemical techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), N2 adsorption/desorption. It was found that without any external doping MTiO2 exhibited significant high adsorption abilities for adsorbing the gaseous acetaldehyde by the adsorption ratio of 39.15%.


2013 ◽  
Vol 1505 ◽  
Author(s):  
Gabriela Borin Barin ◽  
Yane Honorato Santos ◽  
Jennyfer Alves Rocha ◽  
Luiz Pereira da Costa ◽  
Antônio Gomes Souza Filho ◽  
...  

ABSTRACTTwo dimensional (2D) carbon nanomaterials such as few graphite layers or graphene are extensively studied due to their unique properties suitable to be exploiting in a wide range of technological applications. Recently, the growth of high quality graphene monolayers using insects and waste as carbon precursors was reported in the literature. This methodology opened a new way to convert the waste carbon into a high-value-added product. In the present work coconut coir dust, an agroindustrial biomass, was used as biotemplate for preparing carbonaceous materials. Carbon structures were synthesized through pyrolysis under nitrogen atmosphere (100mL/min) at 500, 1000, and 1500°C during 2 hours. Starting materials were coconut coir dust in natura and coconut coir dust hydrothermally treated. The samples were characterized by X-ray diffraction, Raman Spectroscopy, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Raman spectra showed the D band for all samples, related to the presence of defects in sp2 carbon structure and G band, indicative of graphite crystallites. It was also observed that the sample carbonized at 1500°C from coconut coir dust treated by hydrothermal method showed G’ band at 2685cm-1 associated with the stacking order along the c-axis. X-ray diffraction analysis showed a broad peak around 2θ= 22° related to the presence of amorphous carbon. By increasing the pyrolysis temperature changes in XRD diffractograms were observed and the sample which was pyrolysed at 1500°C from coconut coir dust hydrothermally treated showed peaks at 2θ= 26.5°, 43° e 45° assigned to (002), (100) (101) graphite plans, respectively. Scanning electron microscopy images showed the presence of overlapping sheets and plates. Transmission Electron Microscopy (TEM) images of coconut coir dust in natura unveiled the formation of amorphous sheet. Coconut coir dust in natura and treated by the hydrothermal method pyrolysed at 1500°C, lead to the formation of some graphitic domains and few graphene layers.


Sign in / Sign up

Export Citation Format

Share Document