Battery-type hollow Prussian blue analogues for asymmetric supercapacitor

2022 ◽  
Author(s):  
Guofu Tian ◽  
Xuan Ran ◽  
Qiufan Wang ◽  
Daohong Zhang

Hollow/porous nanomaterials are widely applicable in various fields. The last years have witnessed increasing interests in the nanoscale Kirkendall effect as a versatile route to fabricate hollow/porous nanostructures. The transformation...

2021 ◽  
Vol 21 (2) ◽  
pp. 916-925
Author(s):  
SuKyung Jeon ◽  
Carissa H. Li ◽  
Daniel R. Talham

2007 ◽  
Vol 120 (3) ◽  
pp. 427-427
Author(s):  
Xavier Roy ◽  
Laurence K. Thompson ◽  
Neil Coombs ◽  
Mark J. MacLachlan

Biosensors ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 193
Author(s):  
Galina Z. Gayda ◽  
Olha M. Demkiv ◽  
Yanna Gurianov ◽  
Roman Ya. Serkiz ◽  
Halyna M. Klepach ◽  
...  

Prussian blue analogs (PBAs) are well-known artificial enzymes with peroxidase (PO)-like activity. PBAs have a high potential for applications in scientific investigations, industry, ecology and medicine. Being stable and both catalytically and electrochemically active, PBAs are promising in the construction of biosensors and biofuel cells. The “green” synthesis of PO-like PBAs using oxido-reductase flavocytochrome b2 is described in this study. When immobilized on graphite electrodes (GEs), the obtained green-synthesized PBAs or hexacyanoferrates (gHCFs) of transition and noble metals produced amperometric signals in response to H2O2. HCFs of copper, iron, palladium and other metals were synthesized and characterized by structure, size, catalytic properties and electro-mediator activities. The gCuHCF, as the most effective PO mimetic with a flower-like micro/nano superstructure, was used as an H2O2-sensitive platform for the development of a glucose oxidase (GO)-based biosensor. The GO/gCuHCF/GE biosensor exhibited high sensitivity (710 A M−1m−2), a broad linear range and good selectivity when tested on real samples of fruit juices. We propose that the gCuHCF and other gHCFs synthesized via enzymes may be used as artificial POs in amperometric oxidase-based (bio)sensors.


1979 ◽  
Vol 41 (3) ◽  
pp. 287-292 ◽  
Author(s):  
E. Fluck ◽  
H. Inoue ◽  
M. Nagao ◽  
S. Yanagisawa

2016 ◽  
Vol 18 (4) ◽  
pp. 3188-3196 ◽  
Author(s):  
D. Dedovets ◽  
P. Bauduin ◽  
J. Causse ◽  
L. Girard ◽  
O. Diat

We showed fully reversible, ionic strength controlled self-assembly of Prussian blue analogues nano-tiles into large superlattice structures.


Sign in / Sign up

Export Citation Format

Share Document