The alleviating effect and mechanism of Bilobalide on ulcerative colitis

2021 ◽  
Author(s):  
Haolong Zhang ◽  
Yan Wang ◽  
Yingchun Su ◽  
Xuedong Fang ◽  
Wenjin Guo

Bilobalide alleviates ulcerative colitis by inhibiting inflammatory response, protecting the intestinal epithelial barrier, and improving the composition of intestinal flora.

Epigenomics ◽  
2021 ◽  
Author(s):  
Bing Li ◽  
Yan Li ◽  
Lixiang Li ◽  
Yu Yu ◽  
Xiang Gu ◽  
...  

Aims: Few circRNAs have been thoroughly explored in ulcerative colitis (UC). Materials & methods: Microarrays and qualitative real-time PCR were used to detect and confirm dysregulated circRNAs associated with UC. Functional analysis was performed to explore the roles. Results: A total of 580 circRNAs and 87 miRNAs were simultaneously dysregulated in both inflamed and noninflamed UC colonic mucosa compared with healthy controls. Accordingly, hsa_circ_0001021 was significantly downregulated in patients with UC and was related to Mayo scores. Clinical samples and cell experiments revealed that hsa_circ_0001021 was expressed in epithelial cells and correlated with ZO-1, occludin and CLDN-2. Moreover, hsa_circ_0001021 sponged miR-224-5p to upregulate smad4 and increased ZO-1 and occludin. Conclusion: Hsa_circ_0001021 is related to UC severity and regulates epithelial barrier function via sponging miR-224-5p.


2019 ◽  
Vol 189 (9) ◽  
pp. 1763-1774 ◽  
Author(s):  
Artin Soroosh ◽  
Carl R. Rankin ◽  
Christos Polytarchou ◽  
Zulfiqar A. Lokhandwala ◽  
Ami Patel ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Zhiwei Miao ◽  
Liping Chen ◽  
Hui Feng ◽  
Mingjia Gu ◽  
Jing Yan ◽  
...  

Ulcerative colitis (UC) is a chronic intestinal disease with unclear pathogenesis. With an increasing global prevalence over the past two decades, UC poses a serious threat to public health. Baitouweng decoction (BTW), a traditional Chinese medicine, has been shown to have good clinical efficacy for treating intestinal inflammation. Yet, the efficacy of BTW in UC and the underlying mechanism remain unclear. The current study aimed to determine whether BTW suppressed intestinal inflammation in mice and the potential mechanism. We used a dextran sulfate sodium (DSS)-induced murine colitis model to test the anti-inflammatory efficacy of BTW. Clinical symptoms were scored by the disease activity index (DAI), and the colon length and pathological changes in colon tissue were also used to further evaluate the efficacy of BTW. Precisely how BTW affected immune function and the intestinal barrier of UC mice was also examined. BTW significantly reduced DAI score and colonic pathological damage. BTW regulated the balance between T helper (Th)17 and regulatory T (Treg) cells, decreased interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, and increased IL-10 levels. BTW reduced intestinal permeability of UC mice, increased expression of tight junction proteins (occludin and zonula occludens-1), and decreased expression of phospho-nuclear factor (p-NF)-κB and phospho-extracellular signal-regulated kinase (p-ERK) in the colon. BTW inhibited the ERK/p-NF-κB signaling pathway and suppressed expression of cyclo-oxygenase-2 and inducible NO synthase in lipopolysaccharide-activated RAW 264.7 cells. BTW significantly promoted the synthesis of short-chain fatty acids in the gut, particularly acetate, propionate, isobutyric acid, and isovalerate. The results suggest that BTW can protect against DSS-induced UC. The mechanism may be partially attributed to regulating the balance of Th17/Treg cells and restoring the intestinal epithelial barrier.


Sign in / Sign up

Export Citation Format

Share Document