Vitamin A and Retinoic Acid Exhibit Protective Effects on Necrotizing Enterocolitis by Regulating Intestinal Flora and Enhancing the Intestinal Epithelial Barrier

2018 ◽  
Vol 49 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Sa Xiao ◽  
Qiuping Li ◽  
Kun Hu ◽  
Yu He ◽  
Qing Ai ◽  
...  
2017 ◽  
Vol 23 (3) ◽  
pp. 276-284 ◽  
Author(s):  
Kan Xiao ◽  
Shuting Cao ◽  
Lefei Jiao ◽  
Zehe Song ◽  
Jianjun Lu ◽  
...  

The aim of this study was to investigate the protective effects of TGF-β1 on intestinal epithelial barrier, as well as canonical Smad and MAPK signal pathways involved in these protection processes by a IPEC-J2 model stimulated with TNF-α. IPEC-J2 monolayers were treated without or with TNF-α in the absence or presence of TGF-β1. The results showed that TGF-β1 pretreatment ameliorated TNF-α-induced intestinal epithelial barrier disturbances as indicated by decrease of transepithelial electrical resistance (TER) and increase of paracellular permeability. TGF-β1 also dramatically alleviated TNF-α-induced alteration of TJ proteins ZO-1 and occludin. Moreover, TGF-β1 pretreatment increased TβRII protein expression in IPEC-J2 monolayers challenged with TNF-α. In addition, a significant increase of Smad4 and Smad7 mRNA was also observed in the TGF-β1 pretreatment after TNF-α challenge compared with the control group. Furthermore, TGF-β1 pretreatment enhanced smad2 protein activation. These results indicated that the canonical Smad signaling pathway was activated by TGF-β1 pretreatment. Finally, TGF-β1 pretreatment decreased the ratios of the phosphorylated to total JNK and p38 (p-JNK/JNK and p-p38/p38) and increased the ratio of ERK (p-ERK/ERK). Anti-TGF-β1 Abs reduced these TGF-β1 effects. These results indicated that TGF-β1 protects intestinal integrity and influences Smad and MAPK signal pathways in IPEC-J2 after TNF-α challenge.


2021 ◽  
Vol 22 (4) ◽  
pp. 1887
Author(s):  
Michael Meir ◽  
Felix Kannapin ◽  
Markus Diefenbacher ◽  
Yalda Ghoreishi ◽  
Catherine Kollmann ◽  
...  

Enteric glial cells (EGCs) of the enteric nervous system are critically involved in the maintenance of intestinal epithelial barrier function (IEB). The underlying mechanisms remain undefined. Glial cell line-derived neurotrophic factor (GDNF) contributes to IEB maturation and may therefore be the predominant mediator of this process by EGCs. Using GFAPcre x Ai14floxed mice to isolate EGCs by Fluorescence-activated cell sorting (FACS), we confirmed that they synthesize GDNF in vivo as well as in primary cultures demonstrating that EGCs are a rich source of GDNF in vivo and in vitro. Co-culture of EGCs with Caco2 cells resulted in IEB maturation which was abrogated when GDNF was either depleted from EGC supernatants, or knocked down in EGCs or when the GDNF receptor RET was blocked. Further, TNFα-induced loss of IEB function in Caco2 cells and in organoids was attenuated by EGC supernatants or by recombinant GDNF. These barrier-protective effects were blunted when using supernatants from GDNF-deficient EGCs or by RET receptor blockade. Together, our data show that EGCs produce GDNF to maintain IEB function in vitro through the RET receptor.


2017 ◽  
Vol 42 (4) ◽  
pp. 1390-1406 ◽  
Author(s):  
Yingying Li ◽  
Yuan Gao ◽  
Ting Cui ◽  
Ting Yang ◽  
Lan Liu ◽  
...  

Background/Aims: Vitamin A (VA) protects the intestinal epithelial barrier by improving cell migration and proliferation. Our previous studies demonstrated that VA deficiency (VAD) during pregnancy suppresses the systemic and mucosal immune responses in the intestines of offspring and that VA supplementation (VAS) during early life can increase immune cell counts. However, little is known about the mechanisms by which VA regulates intestinal epithelial barrier function. Methods: Caco-2 cells were treated with all-trans retinoic acid (ATRA) for 24 hours to determine the optimum ATRA concentration to which the cells in question respond. Caco-2 cells were infected with recombinant adenoviruses carrying retinoic acid receptor beta (Ad-RARβ) and small interfering RARβ(siRARβ) to assess the effects of RARβ signalling on the expression of specific proteins. A siTLR4 lentivirus was used to knockdown Toll-like receptor 4 (TLR4) in Caco-2 cells to determine its role in the protective effects of VA on the intestinal epithelial barrier, and experiments involving TLR4-knock-out mice were performed to verify the effect of TLR4. VA normal (VAN), VAD and VAS rat models were established to confirm that changes in RARβ, TLR4 and ZO-2 expression levels that occurred following decreases or increases in retinol concentrations in vivo, and the permeability of the Caco-2 cell monolayer, as well as that of the epithelial barrier of the rat intestine was detected by measuring transepithelial resistance (TER) or performing enzyme-linked immunosorbent assay (ELISA). Retinoic acid receptor (RAR), toll like receptor (TLR) and tight junction (TJ) mRNA and protein expression levels in Caco-2 cells and the colon monolayers in the rat and mouse models were measured by PCR and western blotting, respectively. Co-immunoprecipitation (co-IP) and immunofluorescence staining were performed to assess the interactions among RARβ, TLR4 and zonula occluden-2 (ZO-2) in Caco-2 cells, and chromatin immunoprecipitation (ChIP) assay was performed to assess the binding between RARβ and the TLR4 promoter sequence in Caco-2 cells. Results: In the present study, ATRA treatment not only increased the TER of the Caco-2 monolayer but also up-regulated the expression levels of RARβ, TLR4 and ZO-2 in Caco-2 cells. The expression levels of these three proteins were significantly decreased in the colonic epithelial monolayers of VAD rats compared with those of VAN rats and were significantly increased following VAS in the corresponding group compared with the control group. Furthermore, the above changes in TLR4 and ZO-2 expression levels were augmented or attenuated by Ad-RARβ or siRARβ infection, respectively, in Caco-2 cells. Interestingly, siTLR4 down-regulated ZO-2 expression but did not affect RARβ expression in Caco-2 cells, and in VAD mice the lack of TLR4 did not affect ZO-2 expression. We noted direct interactions between RARβ and TLR4, TLR4 and ZO-2 in Caco-2 cells, and ChIP assay showed that RARβ could bind to the TLR4 promoter but not the ZO-2 promoter in Caco-2 cells. Conclusion: Taken together, our results indicate that RARβ enhanced ZO-2 expression by regulating TLR4 to improve intestinal epithelial barrier function in Caco-2 cells, as well as in rat and mouse models, but not in humans.


Sign in / Sign up

Export Citation Format

Share Document