Continuous flow processes for the S-alkynylation of cysteine-containing peptides and thioglycoside under catalyst-free, oxidant-free and mild conditions

2021 ◽  
Author(s):  
Long-Zhou Qin ◽  
Xin Yuan ◽  
Jie Liu ◽  
Meng-yu Wu ◽  
Qi Sun ◽  
...  

Herein, we develop a novel method for the selective alkynylation of cysteine-containing peptides and 1-thioglycoside residues by the use of continuous flow. This method was characterised by the mild conditions...

2020 ◽  
Vol 02 (03) ◽  
pp. e128-e132
Author(s):  
Shao-Zheng Guo ◽  
Zhi-Qun Yu ◽  
Wei-Ke Su

AbstractThe development of highly efficient C–C bond formation methods for the synthesis of ethyl 2-(2,4-dichloro-5-fluorobenzoyl)-3-(dimethylamino)acrylate 1 in continuous flow processes has been described, which is based on the concept of rapid and efficient activation of carboxylic acid. 2,4-Dichloro-5-fluorobenzoic acid is rapidly converted into highly reactive 2,4-dichloro-5-fluorobenzoyl chloride by treating with inexpensive and less-toxic solid bis(trichloromethyl)carbonate. And then it rapidly reacts with ethyl 3-(dimethylamino)acrylate to afford the desired 1. This process can be performed under mild conditions. Compared with the traditional tank reactor process, less raw material consumption, higher product yield, less reaction time, higher operation safety ensured by more the environmentally friendly procedure, and process continuity are achieved in the continuous-flow system.


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Davide Rigo ◽  
Nadia Alessandra Carmo Dos Santos ◽  
Alvise Perosa ◽  
Maurizio Selva

An unprecedented two-step sequence was designed by combining batch and continuous flow (CF) protocols for the upgrading of two aminodiol regioisomers derived from glycerol, i.e., 3-amino-1,2-propanediol and 2-amino-1,3-propanediol (serinol). Under batch conditions, at 80–90 °C, both substrates were quantitatively converted into the corresponding amides through a catalyst-free N-acetylation reaction mediated by an innocuous enol ester as isopropenyl acetate (iPAc). Thereafter, at 30–100 °C and 1–10 atm, the amide derivatives underwent a selective CF-acetalisation in the presence of acetone and a solid acid catalyst, to afford the double-functionalized (amide-acetal) products.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 303
Author(s):  
András Gy. Németh ◽  
Renáta Szabó ◽  
György Orsy ◽  
István M. Mándity ◽  
György M. Keserű ◽  
...  

We have developed the continuous-flow synthesis of thioureas in a multicomponent reaction starting from isocyanides, amidines, or amines and sulfur. The aqueous polysulfide solution enabled the application of sulfur under homogeneous and mild conditions. The crystallized products were isolated by simple filtration after the removal of the co-solvent, and the sulfur retained in the mother liquid. Presenting a wide range of thioureas synthesized by this procedure confirms the utility of the convenient continuous-flow application of sulfur.


1990 ◽  
Vol 19 (1-4) ◽  
pp. 258-262 ◽  
Author(s):  
John R. English ◽  
Tep Sastri

2016 ◽  
Vol 20 (5) ◽  
pp. 911-920 ◽  
Author(s):  
Dominic Ormerod ◽  
Nicolas Lefevre ◽  
Matthieu Dorbec ◽  
Inge Eyskens ◽  
Pieter Vloemans ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1026 ◽  
Author(s):  
Xin He ◽  
Xiaoling Xu ◽  
Qian Wan ◽  
Guangxu Bo ◽  
Yunjun Yan

Nonisocyanate polyurethane (NIPU) is a research hotspot in polyurethane applications because it does not use phosgene. Herein, a novel method of solvent- and catalyst-free synthesis of a hybrid nonisocyanate polyurethane (HNIPU) is proposed. First, four diamines were used to react with ethylene carbonate to obtain four bis(hydroxyethyloxycarbonylamino)alkane (BHA). Then, BHA reacted with dimer acid under condensation in the melt to prepare four nonisocynate polyurethane prepolymers. Further, the HNIPUs were obtained by crosslinking prepolymers and resin epoxy and cured with the program temperature rise. In addition, four amines and two resin epoxies were employed to study the effects and regularity of HNIPUs. According to the results from thermal and dynamic mechanical analyses, those HNIPUs showed a high degree of thermal stability, and the highest 5% weight loss reached about 350 °C. More importantly, the utilization of these green raw materials accords with the concept of sustainable development. Further, the synthetic method and HNIPUs don’t need isocyanates, catalysts, or solvents.


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 783 ◽  
Author(s):  
Patrick Bitterwolf ◽  
Felix Ott ◽  
Kersten S. Rabe ◽  
Christof M. Niemeyer

All-enzyme hydrogels are biocatalytic materials, with which various enzymes can be immobilized in microreactors in a simple, mild, and efficient manner to be used for continuous flow processes. Here we present the construction and application of a cofactor regenerating hydrogel based on the imine reductase GF3546 from Streptomyces sp. combined with the cofactor regenerating glucose-1-dehydrogenase from Bacillus subtilis. The resulting hydrogel materials were characterized in terms of binding kinetics and viscoelastic properties. The materials were formed by rapid covalent crosslinking in less than 5 min, and they showed a typical mesh size of 67 ± 2 nm. The gels were applied for continuous flow biocatalysis. In a microfluidic reactor setup, the hydrogels showed excellent conversions of imines to amines for up to 40 h in continuous flow mode. Variation of flow rates led to a process where the gels showed a maximum space-time-yield of 150 g·(L·day)−1 at 100 μL/min.


2020 ◽  
Vol 103 (2) ◽  
Author(s):  
Davide Toniolo ◽  
Felix D. Bobbink ◽  
Paul J. Dyson ◽  
Marinella Mazzanti

2020 ◽  
Vol 18 (46) ◽  
pp. 9494-9498
Author(s):  
Jingya Yang ◽  
Ganggang Wang ◽  
Shuwen Chen ◽  
Ben Ma ◽  
Hongyan Zhou ◽  
...  

A catalyst- and additive-free, visible-light-promoted S–H insertion reaction between thiols and α-diazoesters has been developed under mild conditions.


Sign in / Sign up

Export Citation Format

Share Document