Candidate kinases for adipogenesis and osteoblastogenesis from human bone marrow mesenchymal stem cells

2021 ◽  
Author(s):  
Xia Yi ◽  
Ping Wu ◽  
Jianyun Liu ◽  
Shan He ◽  
Ying Gong ◽  
...  

Adipogenesis and osteoblastogenesis (adipo-osteoblastogenesis) are closely related processes involving with the phosphorylation of numerous cytoplasmic proteins and key transcription factors.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xiang Sun ◽  
Junchuan Cao ◽  
Jiusong Han ◽  
Bo Jia ◽  
Jing Wang ◽  
...  

Objective. This study is aimed at investigating the role of long noncoding RNA (lncRNA) RP11-815M8.1 in the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Methods. RT-PCR was used to detect the expression of lncRNA RP11-815M8.1 before and after osteogenic differentiation of hBMSCs. The lncRNA RP11-815M8.1 in hBMSCs was overexpressed or silenced via lentiviral transfection. The transfection efficiency was detected by RT-PCR, and the proliferation of hBMSCs was determined by CCK-8. After 14 days of osteogenic differentiation of transfected hBMSCs, the expression of osteogenic transcription factors (ALP, OCN, OPN, Runx2, and Osterix) was detected by alizarin red staining and RT-PCR. The mRNAs directly regulated by lncRNA RP11-815M8.1 and targeted miRNAs were analyzed according to the positional relationship between lncRNA and mRNA in the genome and miRanda software. Results. The expression of lncRNA RP11-815M8.1 enhanced with increasing osteogenic differentiation time of hBMSCs. Two days after the transfection of hBMSCs, lncRNA RP11-815M8.1 expression was significantly increased in the overexpression group and significantly decreased in the knockdown group, compared to control cells. The CCK-8 assay showed that overexpression and knockdown of lncRNA RP11-815M8.1 did not affect the proliferation of hBMSCs. After 14 days of differentiation of hBMSCs, stronger alizarin red staining was observed in the overexpression groups, and the expression of osteogenic transcription factors was increased in the overexpression group compared to the control. In the knockdown group, alizarin red staining and the expression of osteogenic transcription factors were decreased. Bioinformatics analysis showed that lncRNA RP11-815M8.1 was directly associated with one mRNA, 27 interacting miRNAs, and 20 miRNA-targeted mRNAs. Conclusion. The osteogenic differentiation of hBMSCs can be promoted by lncRNA RP11-815M8.1 in vitro.


2012 ◽  
Vol 7 (6) ◽  
pp. 757-767 ◽  
Author(s):  
Sarah L Boddy ◽  
Wei Chen ◽  
Ricardo Romero-Guevara ◽  
Lucksy Kottam ◽  
Illaria Bellantuono ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Feng Zhi ◽  
Yi Ding ◽  
Rong Wang ◽  
Yujiao Yang ◽  
Kaiming Luo ◽  
...  

Abstract Background As one of the most common chronic diseases in the world, osteoporosis occurs especially in postmenopausal women. Circular RNAs (circRNAs) are emerging as major drivers in human disease. The aim of the present study was to analyse circRNA expression profiles in osteoporosis and to explore the clinical significance and the regulatory molecular mechanism of hsa_circ_0006859 during osteoporosis. Methods Exosomes were isolated from clinically collected serum samples. A circRNA microarray was performed to screen differentially expressed circRNAs. Quantitative real-time PCR (qRT-PCR) and western blot were performed to analyse target gene mRNA expression and protein expression. Alizarin red staining (ARS) was performed to evaluate the mineralization ability of human bone marrow mesenchymal stem cells (hBMSCs). Oil Red O staining was performed to evaluate the lipid droplet formation ability of hBMSCs. Bioinformatics analysis and the luciferase reporter assay were performed to investigate the interaction between two genes. Results Hsa_circ_0006859 was identified as one of the most upregulated circRNAs in the microarray analysis. Hsa_circ_0006859 in exosomes was upregulated in osteoporosis patients compared to healthy controls. Hsa_circ_0006859 differentiated osteopenia or osteoporosis patients from healthy controls with high sensitivity and specificity. Hsa_circ_0006859 suppressed osteoblastic differentiation and promoted adipogenic differentiation of hBMSCs. Hsa_circ_0006859 directly bound to miR-431-5p, and ROCK1 was identified as a novel target gene of miR-431-5p. Hsa_circ_0006859 is a competing endogenous RNA (ceRNA) of miR-431-5p that promotes ROCK1 expression. Hsa_circ_0006859 suppressed osteogenesis and promoted adipogenesis by sponging miR-431-5p to upregulate ROCK1. Conclusions Exosomal hsa_circ_0006859 is a potential biomarker for postmenopausal osteoporosis and controls the balance between osteogenesis and adipogenesis in hBMSCs by sponging miR-431-5p.


Sign in / Sign up

Export Citation Format

Share Document