scholarly journals Experimental Study of lncRNA RP11-815M8.1 Promoting Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xiang Sun ◽  
Junchuan Cao ◽  
Jiusong Han ◽  
Bo Jia ◽  
Jing Wang ◽  
...  

Objective. This study is aimed at investigating the role of long noncoding RNA (lncRNA) RP11-815M8.1 in the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Methods. RT-PCR was used to detect the expression of lncRNA RP11-815M8.1 before and after osteogenic differentiation of hBMSCs. The lncRNA RP11-815M8.1 in hBMSCs was overexpressed or silenced via lentiviral transfection. The transfection efficiency was detected by RT-PCR, and the proliferation of hBMSCs was determined by CCK-8. After 14 days of osteogenic differentiation of transfected hBMSCs, the expression of osteogenic transcription factors (ALP, OCN, OPN, Runx2, and Osterix) was detected by alizarin red staining and RT-PCR. The mRNAs directly regulated by lncRNA RP11-815M8.1 and targeted miRNAs were analyzed according to the positional relationship between lncRNA and mRNA in the genome and miRanda software. Results. The expression of lncRNA RP11-815M8.1 enhanced with increasing osteogenic differentiation time of hBMSCs. Two days after the transfection of hBMSCs, lncRNA RP11-815M8.1 expression was significantly increased in the overexpression group and significantly decreased in the knockdown group, compared to control cells. The CCK-8 assay showed that overexpression and knockdown of lncRNA RP11-815M8.1 did not affect the proliferation of hBMSCs. After 14 days of differentiation of hBMSCs, stronger alizarin red staining was observed in the overexpression groups, and the expression of osteogenic transcription factors was increased in the overexpression group compared to the control. In the knockdown group, alizarin red staining and the expression of osteogenic transcription factors were decreased. Bioinformatics analysis showed that lncRNA RP11-815M8.1 was directly associated with one mRNA, 27 interacting miRNAs, and 20 miRNA-targeted mRNAs. Conclusion. The osteogenic differentiation of hBMSCs can be promoted by lncRNA RP11-815M8.1 in vitro.

2021 ◽  
Author(s):  
Ziyue Qin ◽  
Shu Hua ◽  
Huifen Chen ◽  
Zhuo Wang ◽  
Haoran Wang ◽  
...  

Periodontitis is a series of inflammatory processes caused by bacterial infection. Parathyroid hormone (PTH) plays a critical role in bone remodeling. This study aimed to investigate the influences of PTH on human bone marrow mesenchymal stem cells (HBMSCs) pretreated with lipopolysaccharide (LPS). The proliferative ability was measured using cell counting kit-8 and flow cytometry. The optimal concentrations of PTH and LPS were determined using alkaline phosphatase (ALP) activity assay, ALP staining, and Alizarin red staining. Osteogenic differentiation was further assessed by quantitative reverse transcription–polymerase chain reaction, Western blot analysis, and immunofluorescence staining. PTH had no effects on the proliferation of HBMSCs. Also, 100 ng/mL LPS significantly inhibited HBMSC osteogenesis, while 10−9 mol/L PTH was considered as the optimal concentration to reverse the adverse effects. Mechanistically, c-Jun N-terminal kinase (JNK) phosphorylation was activated by PTH in LPS-induced HBMSCs. SP600125, a selective inhibitor targeting JNK mitogen-activated protein kinase (MAPK) signaling, weakened the effects of PTH. Taken together, the findings revealed the role and mechanism of PTH and JNK pathway in promoting the osteogenic differentiation of LPS-induced HBMSCs, which offered an alternative for treating periodontal diseases.


2021 ◽  
Author(s):  
Xia Yi ◽  
Ping Wu ◽  
Jianyun Liu ◽  
Shan He ◽  
Ying Gong ◽  
...  

Adipogenesis and osteoblastogenesis (adipo-osteoblastogenesis) are closely related processes involving with the phosphorylation of numerous cytoplasmic proteins and key transcription factors.


Sign in / Sign up

Export Citation Format

Share Document