Binary MOF of iron and copper for treating ciprofloxacin contaminated waste water by integrated technique of adsorption and photocatalytic degradation

2021 ◽  
Author(s):  
Aditi Chatterjee ◽  
Amiya K Jana ◽  
Jayanta Kumar Basu

Adsorption assisted photocatalysis is a new approach to control water pollution. A novel metal organic framework MIL 53(Fe-Cu) was formulated by a single step solvothermal route. The newly developed MOF...

2021 ◽  
Author(s):  
Rokesh Karuppannan ◽  
Sakar Mohan ◽  
Trong-On Do

Amine-functionalized metal-organic framework integrated bismuth tungstate (Bi2WO6/NH2-UiO-66) nanocomposite has been developed by in-situ growth of NH2-UiO-66 on Bi2WO6 micro/nanoflower via hydrothermal technique and studied their photocatalytic performance towards ciprofloxacin degradation...


2021 ◽  
Vol 02 ◽  
Author(s):  
Xinxin Liu ◽  
Jiaqing Ren ◽  
Jiaqi Fang ◽  
An Pan ◽  
Nianqiao Qin ◽  
...  

: Photocatalytic degradation is an energy-efficient, cost-effective, and stable process that has a wide-range of applications. It is considered a promising method for the removal of organic pollutants. As a new type of porous materials, Metal-organic framework (MOF) composites have been proven to be an ideal catalyst for the degradation of organic pollutants due to their small size and large specific surface area. In this review, several common preparation methods of MOF composites are evaluated:microwave synthesis, solvent-thermal method, electrochemical method and layer by layer growth method. The degradation effects of MOF composites on different organic pollutants are summarized, and the excellent photocatalytic performances of some MOF composites are demonstrated. Finally, the prospect of photocatalytic degradation of organic pollutants by MOF composites is examined, and the challenges of further development of MOF composites are discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Pham Dinh Du ◽  
Huynh Thi Minh Thanh ◽  
Thuy Chau To ◽  
Ho Sy Thang ◽  
Mai Xuan Tinh ◽  
...  

In the present paper, the synthesis of metal-organic framework MIL-101 and its application in the photocatalytic degradation of Remazol Black B (RBB) dye have been demonstrated. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption isotherms at 77 K. It was found that MIL-101 synthesized under optimal conditions exhibited high crystallinity and specific surface area (3360 m2·g-1). The obtained MIL-101 possessed high stability in water for 14 days and several solvents (benzene, ethanol, and water at boiling temperature). Its catalytic activities were evaluated by measuring the degradation of RBB in an aqueous solution under UV radiation. The findings show that MIL-101 was a heterogeneous photocatalyst in the degradation reaction of RBB. The mechanism of photocatalysis was considered to be achieved by the electron transfer from photoexcited organic ligands to metallic clusters in MIL-101. The kinetics of photocatalytic degradation reaction were analyzed by using the initial rate method and Langmuir-Hinshelwood model. The MIL-101 photocatalyst exhibited excellent catalytic recyclability and stability and can be a potential catalyst for the treatment of organic pollutants in aqueous solutions.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1063 ◽  
Author(s):  
Aisha Asghar ◽  
Naseem Iqbal ◽  
Tayyaba Noor ◽  
Majid Ali ◽  
Timothy L. Easun

Herein we report a facile, efficient, low cost, and easily scalable route for an amine-functionalized MOF (metal organic framework) synthesis. Cu-BDC⊃HMTA (HMTA = hexamethylenetetramine) has high nitrogen content and improved thermal stability when compared with the previously reported and well-studied parent Cu-BDC MOF (BDC = 1,4-benzenedicarboxylate). Cu-BDC⊃HMTA was obtained via the same synthetic method, but with the addition of HMTA in a single step synthesis. Thermogravimetric studies reveal that Cu-BDC⊃HMTA is more thermally stable than Cu-BDC MOF. Cu-BDC⊃HMTA exhibited a CO2 uptake of 21.2 wt % at 273 K and 1 bar, which compares favorably to other nitrogen-containing MOF materials.


Sign in / Sign up

Export Citation Format

Share Document