thermal method
Recently Published Documents





Nutrients ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 219
Eve Wemelle ◽  
Lucie Marousez ◽  
Marie de Lamballerie ◽  
Claude Knauf ◽  
Jean Lesage

Background: High hydrostatic pressure (HHP) processing is a non-thermal method proposed as an alternative to Holder pasteurization (HoP) for the sterilization of human breast milk (BM). HHP preserves numerous milk bioactive factors that are degraded by HoP, but no data are available for milk apelin and glucagon-like peptide 1 (GLP-1), two hormones implicated in the control of glucose metabolism directly and via the gut–brain axis. This study aims to determine the effects of HoP and HHP processing on apelin and GLP-1 concentrations in BM and to test the effect of oral treatments with HoP- and HHP-BM on intestinal contractions and glucose metabolism in adult mice. Methods: Mice were treated by daily oral gavages with HoP- or HHP-BM during one week before intestinal contractions, and glucose tolerance was assessed. mRNA expression of enteric neuronal enzymes known to control intestinal contraction was measured. Results: HoP-BM displayed a reduced concentration of apelin and GLP-1, whereas HHP processing preserved these hormones close to their initial levels in raw milk. Chronic HHP-BM administration to mice increased ileal mRNA nNos expression level leading to a decrease in gut contraction associated with improved glucose tolerance. Conclusion: In comparison to HoP, HPP processing of BM preserves both apelin and GLP-1 and improves glucose tolerance by acting on gut contractions. This study reinforces previous findings demonstrating that HHP processing provides BM with a higher biological value than BM treated by HoP.

2022 ◽  
Vol 905 ◽  
pp. 135-141
Bao Juan Yang ◽  
Rui Xia ◽  
Su Bin Jiang ◽  
Mei Zhen Gao

Due to high theoretical specific capacity and abundant reserves, tin selenide-based materials have received tremendous attentions in the fields of lithium-ion batteries. Nevertheless, the huge volume changes during insertion/de-intercalation processes deteriorate the Coulombic Efficiency greatly. In order to solve it, the researchers have made great efforts by means of controlling nanoparticles granularity, carbon coating, ion doping et al. In this study, SnSe/Cu2SnSe3 heterojunction nanocomposites were synthesized by solvo-thermal method. The resulting SnSe/Cu2SnSe3 is a three-dimensional flower-like hierarchical nanostructure composed of nanoscale thin lamellae of a thickness of 8-12 nm. The unique nanostructure could shorten the diffusion path of lithium ions and expedite charge transfer, and therefore enhance the reaction kinetics. Compared with SnSe, the initial Coulombic efficiency of SnSe/Cu2SnSe3 is raised from 59% to 90% as the anode material of lithium-ion batteries.

2021 ◽  
Viswanathan Vinitha ◽  
Mani Preeyangha ◽  
Murugan Anbarasu ◽  
Gopal Jeya ◽  
Neppolian Bernaurdshaw ◽  

Abstract Poly(ethylene terephthalate) (PET) is one of the most consumed polymers because of its excellent thermal and mechanical properties. By increasing in PET production and since the disposal of PET waste has growing to be a major global environmental issue each year. Chemical recycling is a most successful method to achieve circular economy in the PET utilizing industries. Current research work aims to complete depolymerization of waste PET from soft drink bottles by the aminolysis method to produce bis (2-hydroxy ethylene) terephthalamide (BHETA) in the presence of Sn doped ZnO. To evaluate catalytic activity, pure and Sn2+ doped ZnO nanoparticles prepared using different Sn2+ molar ratios at 0.5, 1.0 and 2.0 mol% and calcined at 500 0C for 1h. The synthesized catalysts characterised using FT-IR, XRD, and UV-vis spectroscopy. The surface morphology and percentage doping obtained from SEM and SEM-EDS, respectively. We have observed a reduction in optical band gap and crystallite size of ZnO due to tin doping. Aminolytic depolymerization of PET waste using ethanolamine promoted by Sn doped ZnO effectively under conventional thermal method. Increase in the yield of the BHETA observed with respect to increasing doping percentage of Sn and 1-2 mol% Sn doped ZnO nanoparticles afforded over 90% of BHETA. Structure and purity of BHETA, depolymerised product characterized by FT-IR, 1HNMR, 13C NMR, and MS.

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1371
Duc Cuong Nguyen ◽  
Trung Tuyen Bui ◽  
Yeong Beom Cho ◽  
Yong Shin Kim

Expanded vermiculite (eVMT) has been studied as a risk-free, general-purpose absorbent for liquid hazards due to its excellent thermal and chemical stability. Here, vermiculite was expanded by two steps: exfoliation by 30 wt% H2O2 treatment at 60 °C and subsequent expansion by microwave heating. This two-step expansion produced more homogenously separated concertina-like eVMTs with a higher total pore volume of 7.75 cm3 g−1 than the conventional thermal method. The two-step eVMT was found to be greatly superior to the thermal and commercial silver counterparts in hazardous liquid-uptake performance. The uptake was simply interpreted as a physical infilling process of a liquid into the eVMT pores, and the spontaneous hazard removal with a great capacity was discussed with the large pore volume of two-step eVMT and its suitable pore dimensions for capillary action. As a practical device, a prototype absorbent assembly made of these eVMTs demonstrated the successful mitigation of liquid hazards on an impermeable surface.

Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 578
Elorn Biteau ◽  
Didier Defer ◽  
Franck Brachelet ◽  
Laurent Zalewski

An in situ estimation of the thermal properties of bio-sourced building wall insulation components is of critical importance in improving both the energy efficiency of buildings and the development of construction materials with a smaller environmental footprint. Depending on weather conditions, passive methods are not always feasible; they require time to conduct lengthy testing and may lead to significant uncertainties. This article presents an active method based on power dissipation via flat electrical resistance. The method can be implemented regardless of outdoor weather conditions and is suitable for walls with high overall thermal resistance for which the small average component of the through flow is difficult to estimate. Measurements are conducted of both wall input flows and temperatures. An inverse method, derived from a finite difference model of 1D transfers along with a multi-objective approach, enables the characteristics of a two-material assembly to be identified. A multi-objective method was chosen to solve the problems of high correlation between the thermal parameters of the model. However, the method requires the use of two temperature sensors integrated inside the wall. Following a laboratory validation phase on a PVC/plasterboard assembly, the method is implemented on an actual wall. A coating/hemp concrete assembly is also characterized as part of this work program. The thermal conductivity of the hemp concrete block was estimated at 0.12 W m−1 K−1 and is consistent with values found in the literature.

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2854
Barbara Speranza ◽  
Angela Racioppo ◽  
Antonio Bevilacqua ◽  
Veronica Buzzo ◽  
Piera Marigliano ◽  

Fish products are highly perishable, requiring proper processing to maintain their quality and safety during the entire storage. Different from traditional methods used to extend the shelf-life of these products (smoking, salting, marinating, icing, chilling, freezing, drying, boiling, steaming, etc.), in recent years, some alternative methods have been proposed as innovative processing technologies able to guarantee the extension of their shelf-life while minimally affecting their organoleptic properties. The present review aims to describe the primary mechanisms of some of these innovative methods applied to preserve quality and safety of fish products; namely, non-thermal atmospheric plasma (NTAP), pulsed electric fields (PEF), pulsed light (PL), ultrasounds (US) and electrolyzed water (EW) are analysed, focusing on the main results of the studies published over the last 10 years. The limits and the benefits of each method are addressed in order to provide a global overview about these promising emerging technologies and to facilitate their greater use at industrial level. In general, all the innovative methods analysed in this review have shown a good effectiveness to control microbial growth in fish products maintaining their organoleptic, nutritional and sensory characteristics. Most of the technologies have also shown the great advantage to have a lower energy consumption and shorter production times. In contrast, not all the methods are in the same development stage; thus, we suggest further investigations to develop one (or more) hurdle-like non-thermal method able to meet both food production requirements and the modern consumers’ demand.

2021 ◽  
Sergey Trebukhov ◽  
Valeriy Volodin ◽  
Olga Ulanova ◽  
Alina Nitsenko ◽  
Farkhat Tuleutay

Abstract Residues from the municipal solid waste processed in incineration plants in European countries are an important raw material to obtain valuable components, including non-ferrous metals. State and private companies specializing in the processing of waste incineration slag as products most often receive concentrates of non-ferrous metals, which, on average, contain, in mass. %: 20÷60 Cu; 10÷30 Zn; 5÷15 Pb; ~ 1 Al; ~ 1 Sn; ~ 1 Fe, up to 50 g/t Аu and up to 3,000 g/t Ag. Concentrates are sent for processing to smelters without taking the cost of zinc into account. The paper presents the study on the separation of metallic zinc into a separate product (zinc concentrate) from the collective concentrate of non-ferrous metals by a vacuum-thermal method, the safest from the environmental point of view. The study was performed with non-ferrous metal concentrate of +0.3-0.8 mm in size, containing wt. %: 68.07 - Cu; 12.4 - Zn; 14.78 - Pb; 0.99 - Al; 1.2 - Sn; 0.15 - Fe, up to 2.0 kg/t - Ag. The material was heat treated at 800÷900℃ with the residual pressure in the system of less than 0.13 kPa. Zinc concentrate was obtained, containing more than 96% of the main component. At the same time, the Cu content increased by 14.09% in the residue from the heat-vacuum treatment. Other metals (Pb, Al, Sn) including noble metals were also concentrated in the residue. The results of the study show that it is possible to separate zinc into a separate product from non-ferrous metal concentrates containing more than 10% Zn in the initial material by the proposed method.

2021 ◽  
Vol 2083 (2) ◽  
pp. 022042
Chengyu Liu ◽  
Minxing Wang ◽  
Guanxing Yi ◽  
Yi Zhuang

Abstract The logarithm correction of black hole entropy is important in understanding the essence of black hole entropy, providing a more accurate entropy calculation. We reviewed the mainstream method of logarithm correction of black hole entropy, including quantum loop gravity correction, conformal field theory correction, and classical thermal correction. Specifically, the correction of quantum loop gravity presents a stable general expression of logarithm correction, which only depends on the surface area of the black hole and solves the problem of meaningless entropy solution under a large length scale. Besides, the correction of the Cardy formula of conformal field theory is limited for the third term in depends on the mass of the black hole, which will finally lead to the unstable coefficient before the correction term. Finally, the correction deduced by the classical thermal method also gives a general expression of black hole entropy. In contrast, the entropy of BTZ black hole has a different coefficient before the logarithm term comparing to other kinds of the black hole. These results shed light for the research in general logarithm correction of black hole entropy, which is suitable for all kinds of black holes.

2021 ◽  
Vol 845 (1) ◽  
pp. 012139
E V Pukhov ◽  
V L Sidorenkov ◽  
I V Shchegolev

Abstract The development of modern technologies for the restoration and hardening of agricultural machine parts require the development of a mathematical apparatus that simulates the involved processes. For this purpose, the models should take into account the technological features of the process of hardening and restoration of machine parts, including: cleaning; determination of geometric indicators; surface preparation; choice of technology; subsequent machining of the resulting surface; surface quality control. One of the priority directions in the development of technologies for the restoration and hardening of parts is the formation of coatings on machine parts using powder materials applied by the gas-thermal method. One of the most important conditions for obtaining high-quality coatings is temperature control on the surface of the part. In this regard, it is of scientific interest to study the effect of the distance from the surface of the part to the flame nozzle when applying self-fluxing powder on the time-average temperature at the point of coating, the maximum temperature on the back side of the part, and the total power transferred to the part by the gas burner. This paper presents a mathematical model for determining the above-mentioned influence, and also presents the results obtained using a computer program. The novelty of the model is the ability to use it to study temperature values for complex curved-bent machine parts (crankshafts and camshafts of agricultural machines). To check the reliability of the dependences obtained, experiments were carried out and the convergence with theoretical developments was confirmed.

2021 ◽  
Vol 10 (1) ◽  
pp. 18
Bruno Albuquerque de Castro ◽  
Guilherme Beraldi Lucas ◽  
Gabriel Scota Fernandes ◽  
José Renato Castro Pompéia Fraga ◽  
Rudolf Ribeiro Riehl ◽  

The quality of power systems is related to their capability to predict failures, avoid stoppages, and increase the lifetime of their components. Therefore, science has been developing monitoring systems to identify failures in induction motors, transformers, and transmission lines. In this context, one of the most crucial components of the electrical systems is the insulation devices such as bushings, which are constantly subjected to dust, thermal stresses, moisture, etc. These conditions promote insulation deterioration, leading to the occurrence of partial discharges. Partial discharges are localized dielectric breakdown that emits ultra-violet radiation, heat, electromagnet, and acoustics waves. The most traditional techniques to identify these flaws on bushings are based on the current, ultra high frequency, and acoustic emission analysis. However, thermal analysis stands out as a noise-resistant technique to monitor several components in the power systems. Although the thermal method is applied to detect different types of faults, such as bad contacts, overloads, etc, this technique has not been previously applied to perform partial discharge detection and evaluate its evolution on bushings. Based on this issue, this article proposes two new indexes to characterize the discharge evolution based on the infrared thermal analysis: the area ratio coefficient and the Red, Green, and Blue (RGB) ratio coefficient. Seven discharge levels were induced in a contaminated bushing, and an infrared thermal camera captured 20 images per condition, totalizing 140 images. New coefficients were used to perform the identification of discharge evolution. Results indicated that values of the new indexes increase with the partial discharge activity. Thus, the new imaging processing approach can be a promising contribution to literature, improving the reliability and maintenance planning for power transmission systems.

Sign in / Sign up

Export Citation Format

Share Document