Designing hierarchical porosity in tin oxide monoliths and their application as solid acid catalyst

2021 ◽  
Author(s):  
Yoshinao Suzuki ◽  
George Hasegawa ◽  
Kazuyoshi Kanamori ◽  
Kazuki Nakanishi

Hierarchically porous tin oxide monoliths have been prepared from a low-cost tin(IV) chloride precursor through an epoxide-mediated sol-gel process in an aprotic solvent N,N-dimethylformamide. Phase separation is induced in the...

2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Seyed Yousef Mosavian

Zirconia was synthesized in nanosize by sol-gel method and perchlorated zirconia (HClO4/ZrO2) with various calcination temperatures were prepared and characterized by XRD, FTIR and SEM techniques. The catalyst acidity characters, including the acidicstrength and the total number of acid sites were determined by potentiometric titration. The catalytic performance experiments show that the HClO4/ZrO2 with calcination temperature of 300 °C has the best catalytic activity. 2,3-Dihydroquinazolin-4(1H)-ones wereprepared in good to excellent yields via condensation reaction of oaminobenzamide and various types of aldehydes and ketones in the presence of HClO4/ZrO2 nanoparticles as an efficient solid acid catalyst. The catalyst is reusable with moderate loss in activity.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
W. N. R. W. Isahak ◽  
M. Ismail ◽  
N. M. Nordin ◽  
J. M. Jahim ◽  
M. A. Yarmo

The purpose of this work is to study the synthesis, characterization, and catalytic performance of two types of solid heteropoly acid catalysts, namely, silicotungstic acid bulk (STAB) and STA-silica sol-gel (STA-SG) compared with sulfuric acid. From the XPS analyses, there was a significant formation of W-O-Si, W-O-W, and Si-O-Si bonding in STA-SG compared to that in STAB. The main spectra of O1s (90.74%, 531.5 eV) followed by other O1s peak (9.26%, 532.8 eV) were due to the presence of W-O-W and W-O-Si bonds, respectively. The STA-SG catalyst was found to be the more environmentally benign solid acid catalyst for the esterification reaction between oleic acid and glycerol due to its lower toxicity supported by silica via sol-gel technique. In addition, the ease of separation for STA-SG catalyst was attributed to its insoluble state in the product phase. The esterification products were then analysed by FTIR and HPLC. Both the H2SO4and the STAB gave high conversion of 100% and 98% but at a lower selectivity of GME with 81.6% and 89.9%, respectively. On the contrary, the STA-SG enabled a conversion of 94% but with a significantly higher GME selectivity of 95%, rendering it the more efficient solid acid catalyst.


2006 ◽  
Vol 11-12 ◽  
pp. 69-72
Author(s):  
Joon Ching Juan ◽  
Yarmo Mohd Ambar ◽  
Jing Chang Zhang

The heterogeneous 12-tungstophosphoric acid (HPW) catalyst is becoming important in industrial processes for example in esterification reaction. A novel solid acid catalyst of HPW entrapped on mesoporous silica was synthesized by sol gel technique. Neutral template dodecylamine was introduced to obtain mesopores structure catalyst. The physical and chemical properties of the catalyst were characterized by XRD, nitrogen sorption and FTIR. In conclusion, this new type of mesoporous solid acid catalyst is a very promising heterogeneous acid catalyst for esterification reaction involving bulky molecules such as fatty acid.


2016 ◽  
Vol 24 (2) ◽  
pp. 102-111
Author(s):  
Nafisehsadat Sheikhan ◽  
Abdol R. Hajipour

Abstract K2FeZrP3O12 was prepared by sol-gel method and used as a mild and efficient solid acid catalyst for Friedel-Crafts benzylation of various arenes with benzyl bromide under solvent-free conditions. The method is green and has high yields.


2012 ◽  
Vol 550-553 ◽  
pp. 234-237 ◽  
Author(s):  
Jun Ping Zhuang ◽  
Xue Ping Li ◽  
Ying Liu

Biomass represents an abundant and relatively low cost carbon resource that can be utilized to produce platform chemicals such as levulinic acid. This study focused on the effect of SO42-/TiO2-Al2O3-SnO2solid acid catalyst on the catalytic performance in levulinic acid production from biomass-derived carbohydrates glucose. The SO42-/TiO2-Al2O3-SnO2solid acid catalyst showed a high catalytic activity for the selective conversion of glucose to levulinic acid. Experimental results showed that SO42-/TiO2-Al2O3-SnO2solid acid had markedly catalytic effects on the conversion of glucose to levulinic acid. With SO42-/TiO2-Al2O3-SnO2solid acid as the catalyst, an optimized ethyl levulinic acid was obtained at 180 °C for 2 h with glucose dosage of 2 wt% and 3 g SO42-/TiO2-Al2O3-SnO2solid acid catalys and the levulinic acid yield was 74.05%.


Author(s):  
Nur Hazirah Rozali Annuar ◽  
Aishah Abdul Jalil ◽  
Sugeng Triwahyono

New catalyst based on zirconia (ZrO2) supported by chromium oxide (CrO3) for isomerization of n-pentane was studied. CrO3-ZrO2 was prepared with chromium nitrate by the titration and sol-gel technique. The physical properties of the catalysts were characterized by XRD, BET surface area analyzer, and TEM. The acidity and structure of catalysts were determined by pyridine and lutidine preadsorbed FTIR spectroscopy.  The isomerization of n-pentane was carried out at 523 K under hydrogen stream. CrO3-ZrO2 shows the differences in terms of physical properties where the introduction CrO3 partially eliminated the monoclinic phase of ZrO2 and developed new peaks assigned to tetragonal phase of ZrO2. CrO3-ZrO2 also shows a higher specific surface area where it increases in the pore volume of the catalyst compare to its parent zirconia.  The IR results indicated that CrO3-ZrO2 catalyst have strong Lewis and weak Brønsted acid sites. The conversion of n-pentane for CrO3-ZrO2 was 32% respectively, while the selectivity to iso-pentane was 100%. ________________________________________GRAPHICAL ABSTRACT


RSC Advances ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 810-818 ◽  
Author(s):  
S. M. Hassan ◽  
M. A. Mannaa ◽  
Amr Awad Ibrahim

Herein, we prepared a mesoporous tin oxide catalyst (mSnO2) activated with phosphate species by the adsorption of phosphate ions from a phosphoric acid solution onto tin oxyhydroxide (Sn(OH)4) surface.


Sign in / Sign up

Export Citation Format

Share Document