Metal phosphide CuP2 as a promising thermoelectric material: an insight from first-principles study

2021 ◽  
Author(s):  
Un-Gi Jong ◽  
Chol-Hyok Ri ◽  
Chol-Jin Pak ◽  
Chol-Hyok Kim ◽  
Stefaan Cottenier ◽  
...  

In the search for better thermoelectric materials, metal phosphides have not been considered to be viable candidates so far, due to their large lattice thermal conductivity. Here we study thermoelectric...

RSC Advances ◽  
2019 ◽  
Vol 9 (62) ◽  
pp. 36301-36307 ◽  
Author(s):  
Jinjie Gu ◽  
Lirong Huang ◽  
Shengzong Liu

The excellent thermoelectric performance of monolayer KCuTe is discovered by first-principles study for the first time.


2017 ◽  
Vol 19 (31) ◽  
pp. 20677-20683 ◽  
Author(s):  
Aamir Shafique ◽  
Abdus Samad ◽  
Young-Han Shin

Using density functional theory, we systematically investigate the lattice thermal conductivity and carrier mobility of monolayer SnX2(X = S, Se).


2013 ◽  
Vol 762 ◽  
pp. 471-475 ◽  
Author(s):  
Zhong Hong Lai ◽  
Jian Ma ◽  
Jing Chuan Zhu

The 8.33at% Mn-doped TiFeSb half-heusler thermoelectric materials were studied by first-principles in this paper. The space occupying of Mn atoms in Mn-doped TiFeSb system was studied according to thermodynamic stability, mechanical stability, and density of states at the Fermi level. The results show that Mn atoms would substitute Ti atoms preferentially at 8.33at% doping amount. The electronic and phonon transport properties were calculated in TiFeSb and (Ti0.75Mn0.25)FeSb to characterize their electronic and thermal conductivity. The results indicate that Mn-doping can increase the power factor due to improving the electronic conductivity while reducing the lattice thermal conductivity. Therefore, the (Ti0.75Mn0.25)FeSb are expected to show better thermoelectric properties than TiFeSb.


2019 ◽  
Vol 116 (8) ◽  
pp. 2831-2836 ◽  
Author(s):  
Chen Chen ◽  
Wenhua Xue ◽  
Shan Li ◽  
Zongwei Zhang ◽  
Xiaofang Li ◽  
...  

Zintl compounds are considered to be potential thermoelectric materials due to their “phonon glass electron crystal” (PGEC) structure. A promising Zintl-phase thermoelectric material, 2-1-2–type Eu2ZnSb2 (P63/mmc), was prepared and investigated. The extremely low lattice thermal conductivity is attributed to the external Eu atomic layers inserted in the [Zn2Sb2]2- network in the structure of 1-2-2–type EuZn2Sb2(P3¯m1), as well as the abundant inversion domain boundary. By regulating the Zn deficiency, the electrical properties are significantly enhanced, and the maximum ZT value reaches ∼1.0 at 823 K for Eu2Zn0.98Sb2. Our discovery provides a class of Zintl thermoelectric materials applicable in the medium-temperature range.


Sign in / Sign up

Export Citation Format

Share Document