Fe2O3/rGO/CNT composite sulfur host with physical and chemical dual-encapsulation for high performance lithium-sulfur batteries

2021 ◽  
Author(s):  
Wei Dong ◽  
meng lingqiang ◽  
zhao meina ◽  
yang fang ◽  
Ding Shen ◽  
...  

Lithium sulfur battery is one of the promising alternatives to traditional lithium-ion battery, but the dissolution of polysulfides and the low conductivity of cathode materials are two important factors for...

2017 ◽  
Vol 5 (48) ◽  
pp. 25187-25192 ◽  
Author(s):  
Xian Wu ◽  
Ying Du ◽  
Pengxiang Wang ◽  
Lishuang Fan ◽  
Junhan Cheng ◽  
...  

This communication reports an interlinked MoO2 and N-rGO composite as sulfur host for high-performance lithium sulfur battery.


Author(s):  
Haojie Li ◽  
Yihua Song ◽  
Kai Xi ◽  
Wei Wang ◽  
Sheng Liu ◽  
...  

A sufficient areal capacity is necessary for achieving high-energy lithium sulfur battery, which requires high enough sulfur loading in cathode materials. Therefore, kinetically fast catalytic conversion of polysulfide intermediates is...


2021 ◽  
Vol 21 (12) ◽  
pp. 6243-6247
Author(s):  
Arenst Andreas Arie ◽  
Shealyn Lenora ◽  
Hans Kristianto ◽  
Ratna Frida Susanti ◽  
Joong Kee Lee

Lithium sulfur battery has become one of the promising rechargeable battery systems to replace the conventional lithium ion battery. Commonly, it uses carbon–sulfur composites as cathode materials. Biomass based carbons has an important role in enhancing its electrochemical characteristics due to the high conductivity and porous structures. Here, potato peel wastes have been utilized to prepare porous carbon lithium sulfur battery through hydrothermal carbonization followed by the chemical activation method using KOH. After sulfur loading, as prepared carbon–sulfur composite shows stable coulombic efficiencies of above 98% and a reversible specific capacity of 804 mAh g−1 after 100 cycles at current density of 100 mA g−1. These excellent electrochemical properties can be attributed to the unique structure of PPWC showing mesoporous structure with large specific surface areas. These results show the potential application of potato peel waste based porous carbon as electrode’s materials for lithium sulfur battery.


2018 ◽  
Vol 6 (18) ◽  
pp. 8655-8661 ◽  
Author(s):  
Chao Wu ◽  
Chunxian Guo ◽  
JingGao Wu ◽  
Wei Ai ◽  
Ting Yu ◽  
...  

A stable lithium sulfide membrane is constructedin situto wrap the mixed sulfur/C material surface of a lithium–sulfur battery (LSB) by delicately tuning the galvanostatic discharge current.


RSC Advances ◽  
2016 ◽  
Vol 6 (112) ◽  
pp. 111190-111196 ◽  
Author(s):  
Xinye Qian ◽  
Lina Jin ◽  
Lin Zhu ◽  
Shanshan Yao ◽  
Dewei Rao ◽  
...  

A CeO2 nanodots decorated ketjen black composite was fabricated by a simple wet impregnation method and used as the host of sulfur for a lithium–sulfur battery.


Author(s):  
Jia-Jia Yuan ◽  
Qingran Kong ◽  
Zheng Huang ◽  
You-Zhi Song ◽  
Mingyang Li ◽  
...  

The commercial application of lithium-sulfur batteries is mainly restricted by quick capacity decay and poor cycle life due to the shuttle effect, insulate nature of sulfur, and cathode structure pulverization....


Sign in / Sign up

Export Citation Format

Share Document