cathode structure
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 33)

H-INDEX

25
(FIVE YEARS 4)

2022 ◽  
Vol 2152 (1) ◽  
pp. 012056
Author(s):  
Yuhao Su

Abstract This article analyses the lithium iron phosphate battery and the ternary lithium battery. With the development of new energy vehicles, people are discussing more and more about the batteries of electric vehicles. Nowadays, electric vehicles mainly use the lithium iron phosphate battery and the ternary lithium battery as energy sources. Existing research and articles have given the current performance of the two batteries but have not systematically compared the two batteries with more details. This article introduces the basic principles, cathode structure, and standard preparation methods of the two batteries by summarizing and discussing existing data and research. The article discusses the two types of batteries and concludes the advantages and disadvantages of the two batteries at the present stage. This article aims to help readers have a more comprehensive understanding of the basic information of the two batteries at this stage and provide theoretical guidance for future research on batteries for electric vehicles.


2021 ◽  
Vol 16 (12) ◽  
pp. T12004
Author(s):  
J.Q. Fu

Abstract The fission Time Projection Chamber (fissionTPC) has been designed and built to make precision cross-section measurements of neutron-induced fission by the NIFFTE Collaboration. The signal of the cathode is implemented as trigger for the fissionTPC that rejects alpha signal as background and selects only fission fragment signal to be recorded. This short note is devoted to a discussion of a promising way to improve the cathode signal performance by segmenting the planar cathode into two parts. It is shown through analytic calculations that the new cathode structure has better signal-to-noise ratio and faster rise time.


2021 ◽  
Vol 105 (1) ◽  
pp. 617-625
Author(s):  
Martin Mačák ◽  
Kamil Jasso ◽  
Petr Vyroubal ◽  
Tomáš Kazda ◽  
Pavel Cudek

Nowadays, Lithium-Sulfur batteries are often considered as the next generation technology for energy storage systems. This article investigates the influence of the size of sulfur clusters present in the cathode on the battery overall electrochemical behavior. The properties of the cathode are studied by cyclic voltammetry simulations using a custom numerical model implemented into Ansys Fluent. The simulation is supplemented by experimental cyclic voltammetry measurements and images from a scanning electron microscope.


2021 ◽  
Vol 22 (21) ◽  
pp. 12045
Author(s):  
Jeffin James Abraham ◽  
Buzaina Moossa ◽  
Hanan Abdurehman Tariq ◽  
Ramazan Kahraman ◽  
Siham Al-Qaradawi ◽  
...  

A NASICON-based Na3V2(PO4)2F3 (NVPF) cathode material is reported herein as a potential symmetric cell electrode material. The symmetric cell was active from 0 to 3.5 V and showed a capacity of 85 mAh/g at 0.1 C. With cycling, the NVPF symmetric cell showed a very long and stable cycle life, having a capacity retention of 61% after 1000 cycles at 1 C. The diffusion coefficient calculated from cyclic voltammetry (CV) and the galvanostatic intermittent titration technique (GITT) was found to be ~10−9–10−11, suggesting a smooth diffusion of Na+ in the NVPF symmetric cell. The electrochemical impedance spectroscopy (EIS) carried out during cycling showed increases in bulk resistance, solid electrolyte interphase (SEI) resistance, and charge transfer resistance with the number of cycles, explaining the origin of capacity fade in the NVPF symmetric cell. Finally, the postmortem analysis of the symmetric cell after 1000 cycles at a 1 C rate indicated that the intercalation/de-intercalation of sodium into/from the host structure occurred without any major structural destabilization in both the cathode and anode. However, there was slight distortion in the cathode structure observed, which resulted in capacity loss of the symmetric cell. The promising electrochemical performance of NVPF in the symmetric cell makes it attractive for developing long-life and cost-effective batteries.


2021 ◽  
Author(s):  
Lin Tang ◽  
Wenli Yang ◽  
Chengjin Shi ◽  
Lifeng Zhang ◽  
Kaige Zhai

Abstract In order to solve the problems of uneven gap distribution and flow pattern in complex parts with multi-stage internal cone holes in electrochemical machining, a method of computer simulation assisted cathode design was proposed. The electric field and flow field models of machining gaps were established respectively, and the simulation of different cathode profiles was carried out. When the cathode cone angle is 2°, the electric field distribution between the cathode and the workpiece is reasonable, and the electrolyte distribution in the machining gap is uniform. With the conditions of processing voltage 10 V, electrolyte inlet pressure 1.5 MPa, electrolyte temperature 28 ℃ and cathode feed speed 5mm/min, the ECM processing of multi-stage internal cone hole was carried out by using the optimized cathode. The results show that the surface of the workpiece has no flow pattern, the dimensional forming accuracy is better than 0.1mm, and the surface roughness reaches Ra0.697µm. Research shows that the optimization of cathode structure with computer simulation can shorten the cathode development cycle and reduce the cost of cathode design effectively in ECM, which provides an efficient and feasible method for the optimization of complex cathode structure.


2021 ◽  
Vol 506 ◽  
pp. 230052
Author(s):  
Yongming Guo ◽  
Yilan Jiang ◽  
Qing Zhang ◽  
Dongyun Wan ◽  
Chun Huang

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 669
Author(s):  
Pierre Toudret ◽  
Jean-François Blachot ◽  
Marie Heitzmann ◽  
Pierre-André Jacques

In this work, platinum group metal (PGM) free-based cathode active layers were prepared using different printing techniques. The membrane electrode assemblies (MEAs) integrate a PGM free catalyst based on Fe, N and C atoms at the cathode side. Scanning electron microscopy (SEM) images of MEA cross sections showed the strong impact of the fabrication process on the cathode structure, the porosity and the ionomer repartition. The MEAs were characterized in a 25 cm2 single cell using cyclic voltammetry under H2/N2. The performance of the MEAs and the double layer capacity of the cathodes were also shown to be linked to the process used. The comparison of the electrochemical accessible surface of the catalyst and of its surface area (SBET) led to the determination of a utilization factor. The coated membrane (CCM) made using the decal transfer process gives the best performances.


Author(s):  
Yidong Jiang ◽  
Wenfei Mo ◽  
Tianyu Cao ◽  
Yixiang Shi ◽  
Ningsheng Cai

AbstractA solid oxide fuel cell (SOFC) with a liquid antimony anode (LAA) is a potential energy conversion technology for the use of impurity-containing fuels. Atmospheric plasma spraying (APS) technology has become a promising LAA-SOFC preparation method because of its economy and convenience. In this paper, button SOFCs with different cathode materials and ratios of pore former were prepared by the APS method and were operated at 750 °C. The effect of the cathode structure on the electrochemical performance of the LAA-SOFCs was analyzed, and an optimized spraying method for LAA-SOFCs was developed. A tubular LAA-SOFC was prepared using the APS method based on the optimized spraying method, and a peak power of 2.5 W was reached. The tubular cell was also measured at a constant current of 2 A for 20 h and was fed with a sulfur-containing fuel to demonstrate its impurity resistance and electrode stability.


Sign in / Sign up

Export Citation Format

Share Document