Synthesis and characterization of a uranium oxide hydrate framework with Sr(II) ions: Structural insights and mixed uranium valences

2022 ◽  
Author(s):  
Kim Lu ◽  
Yingjie Zhang ◽  
Tao Wei ◽  
Timothy Ablott ◽  
Thanh Ha Nguyen ◽  
...  

A mixed-valence uranium oxide hydrate framework with Sr2+ ions (UOF-Sr2) was synthesized hydrothermally and characterized with multiple structural and spectroscopic techniques. Compound UOF-Sr2 crystallizes in monoclinic space group C2/c, having...

1990 ◽  
Vol 45 (4) ◽  
pp. 508-514 ◽  
Author(s):  
B. Nuber ◽  
W. Schatz ◽  
M. L. Ziegler

[CpMo(CO)3]2 (1) (Cp = cyclopentadienyl) reacts with InCl3 in diglyme to yield the oxo-cluster [Cp3Mo3(CO)4(μ-Cl)(μ3-O)] (2) and the cationic oxo-cluster [Cp3Mo3(μ-CO)3(CO)3(μ3-O)]+ as the salt [Cp3Mo3(μ-CO)3(CO)3(μ3-O)][CpMo(CO)3InCl3] (3). The compounds were characterized by elemental analysis, spectroscopic data and X-ray structure analysis. Compound 2 crystallizes in the orthorhombic space group P212121 with a = 1006.0(3), b = 1244.6(4) and c = 1600.8(5) pm, V = 2004.3 x 106 pm3, Z = 4. Compound 3 crystallizes in the monoclinic space group P 21/m with a = 874.4(8), b = 1407(1) and c = 1500(1) pm, β = 92.95(6) , V = 1843 × 106 pm3, Z = 2.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Mohamed I. Attia ◽  
Hazem A. Ghabbour ◽  
Maha S. Almutairi ◽  
Soraya W. Ghoneim ◽  
Hatem A. Abdel-Aziz ◽  
...  

Synthesis and characterization of (1E)-1-(4-chlorophenyl)-N-hydroxy-3-(1H-imidazol-1-yl)propan-1-imine (4) are reported. X-ray crystal structure of the title oxime4confirmed its assigned (E)-configuration. The compound crystallizes in the monoclinic space groupP21/cwitha=13.4292(3) Å,b=8.8343(2) Å,c=11.1797(3) Å,α=90°,β=108.873(2)°,γ=90°,V=1255.03(5) Å3, andZ=4. The molecules are packed in crystal structure by weak intermolecularO–H⋯Nhydrogen bonding interactions. Compound4is a useful intermediate for the synthesis of new imidazole-containing antifungal agents.


2000 ◽  
Vol 55 (5) ◽  
pp. 377-382 ◽  
Author(s):  
Thomas M. Klapötke ◽  
Burkhard Krumm ◽  
Kurt Polbom ◽  
Claudia M. Rienäcker

[Ph4P]2[Pb3Br8] and [Ph4As]2[Pb3Br8] crystallize both in the monoclinic space group P 21/n. The lattice parameters of [Ph4P]2[Pb3Br8] are a = 14.637(7), b = 8.151(3), c = 23.388(8) Å, β = 106.02(3)°, Z = 2 and of [Ph4As]2[Pb3Br8] are a = 14.697(7), b = 8.219(3), c = 23.527(8) Å, β = 106.27(3)°, Z = 2. The lattice parameters of [Ph4P][PbBrCl2]·CH3CN, which crystallizes in the triclinic space group (P 1̅), are a = 9.435(3), b = 10.2577(14), c = 14.055(2) Å, α = 88.320(11)°, β = 84.82(2)°, γ = 84.19(2)°, Z = 2. 207Pb NMR shifts of halogenoplumbates in solution are reported.


Author(s):  
Gunter Heymann ◽  
Elisabeth Selb ◽  
Toni Buttlar ◽  
Oliver Janka ◽  
Martina Tribus ◽  
...  

By high-pressure/high-temperature multianvil synthesis a new high-pressure (HP) phase of Co3TeO6 was obtained. The compound crystallizes in the acentric trigonal crystal system of the Ni3TeO6-type structure with space group R3...


2019 ◽  
Vol 16 (32) ◽  
pp. 812-819
Author(s):  
G. DELGADO ◽  
M. GUILLEN ◽  
A. J. MORA

Polymorphism is known as the ability of a solid material to exist in more than one form or crystal structure, with important applications in the preparation of active pharmaceutical ingredients. Characterization of different polymorphs of the specific metabolite of 4-xylene can contribute to the chemical and pharmaceutical industry. Polymorphism is of particular importance in industrial processes, where different physical properties of polymorphic forms can substantially alter the viability and quality of a manufactured product. This is particularly so for the design and production of drugs in the pharmaceutical industry, as varying physical properties between different polymorphs can affect shelf life and durability, solubility, as well as bioavailability and manufacturing of the drug. The crystallization, spectroscopic and X-ray diffraction characterization of two polymorph and one solvatomorph of 4-methylhippuric acid are presented. These compounds crystallizes in different crystalline systems. Polymorph I (4mH-I) crystalize in an orthorhombic cell with space group P212121. Polymorph II (4mHII) crystallizes in a monoclinic space group P21/c. Solvatomorph (4mH-S) crystallizes in a triclinic P-1 cell. All polymorphs crystallize in neutral form. The crystal packing of the three compounds are governed by hydrogen bonds intermolecular interactions of the type N--H···O and O--H···O forming tridimensional networks.


Author(s):  
Marcin Rojkiewicz ◽  
Piotr Kuś ◽  
Maria Książek ◽  
Joachim Kusz

Cathinones belong to a group of compounds of great interest in the new psychoactive substances (NPS) market. Constant changes to the chemical structure made by the producers of these compounds require a quick reaction from analytical laboratories in ascertaining their characteristics. In this article, three cathinone derivatives were characterized by X-ray crystallography. The investigated compounds were confirmed as: 1-[1-(4-methylphenyl)-1-oxohexan-2-yl]pyrrolidin-1-ium chloride (1, C17H26NO+·Cl−, the hydrochloride of 4-MPHP), 1-(4-methyl-1-oxo-1-phenylpentan-2-yl)pyrrolidin-1-ium chloride (2; C16H24NO+·Cl−, the hydrochloride of α-PiHP) and methyl[1-(4-methylphenyl)-1-oxopentan-2-yl]azanium chloride (3; C13H20NO+·Cl−, the hydrochloride of 4-MPD). All the salts crystallize in a monoclinic space group: 1 and 2 in P21/c, and 3 in P21/n. To the best of our knowledge, this study provides the first detailed and comprehensive crystallographic data on salts 1–3.


2019 ◽  
Vol 74 (4) ◽  
pp. 381-387
Author(s):  
Michael Zoller ◽  
Jörn Bruns ◽  
Gunter Heymann ◽  
Klaus Wurst ◽  
Hubert Huppertz

AbstractA potassium tetranitratopalladate(II) with the composition K2[Pd(NO3)4] · 2HNO3 was synthesized by a simple solvothermal process in a glass ampoule. The new compound crystallizes in the monoclinic space group P21/c (no. 14) with the lattice parameters a = 1017.15(4), b = 892.94(3), c = 880.55(3) Å, and β = 98.13(1)° (Z = 2). The crystal structure of K2[Pd(NO3)4] · 2HNO3 reveals isolated complex [Pd(NO3)4]2− anions, which are surrounded by eight potassium cations and four HNO3 molecules. The complex anions and the cations are associated in layers which are separated by HNO3 molecules. K2[Pd(NO3)4] · 2HNO3 can thus be regarded as a HNO3 intercalation variant of β-K2[Pd(NO3)4]. The characterization is based on single-crystal X-ray and powder X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document