In-Situ Detection of Fluid Media Based on Three-Dimensional Dendritic Silver Surface-Enhanced Raman Scattering Substrate

2022 ◽  
Author(s):  
Sha Li ◽  
Zezhou Wang ◽  
Yunpeng Shao ◽  
Kai Zhang ◽  
Linyu Mei ◽  
...  

In this paper, a highly active surface enhanced Raman scattering (SERS) substrate based on three-dimensional (3D) dendritic silver nanostructure was constructed in microfluidic channel by one-step electrodisplacement reaction for in-situ...

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 685 ◽  
Author(s):  
Zhen Yin ◽  
Huilin He ◽  
Zhenming Wang ◽  
Xiaoguo Fang ◽  
Chunxiang Xu ◽  
...  

Recently, photochemical synthesis has attracted wide interest on in situ preparing the surface-enhanced Raman scattering (SERS) substrate with excellent performance, especially in a compact space and microfluidic channel. Herein, a facile, green and cost-effective approach to in situ photochemically synthesize silver nanoaggregates is demonstrated for SERS applications. By adjusting the photo-irradiation conditions, the morphologies and sizes of the silver nanoaggregates can be deliberately tailored. The synthesized silver nanoaggregates-based substrates exhibit a highly sensitive and reproducible SERS activity with a low detection limit of 10−8 M for 4-Aminothiophenol detection and relative standard deviation of 12.3%, paving an efficient and promising route for in situ SERS-based rapid detection in the environmental monitoring and food quality control.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2209
Author(s):  
Fengyan Wang ◽  
Daxue Du ◽  
Shan Liu ◽  
Linna Wang ◽  
Tifeng Jiao ◽  
...  

Many studies widely used SiO2@Ag composite nanospheres for surface enhanced Raman scattering (SERS), which mainly contributes to electromagnetic enhancement. In addition to experiments, previous simulations mostly adopted a two-dimensional model in SERS research, resulting in the three-dimensional information being folded and masked. In this paper, we adopted the three-dimensional model to simulate the electric field distribution of SiO2@Ag composite nanospheres. It is found that when the Ag nanoparticles are distributed densely on the surface of SiO2 nanospheres, light cannot pass through the upper hemisphere due to the local surface plasmon resonance (LSPR) of the Ag nanoparticles, resulting in the upper hemisphere shielding effect; and if there are no Ag nanoparticles distributed densely on the surface of SiO2 nanospheres, the strong LSPR cannot be formed, so the incident light will be guided downward through the whispering gallery mode of the spherical structure. At the same time, we designed relevant experiments to synthesize SiO2@Ag composite nanosphere as SERS substrate and used Rhodamine 6G as a probe molecule to study its SERS performance. This design achieved a significant SERS effect, and is very consistent with our simulation results.


Nanoscale ◽  
2015 ◽  
Vol 7 (40) ◽  
pp. 17079-17087 ◽  
Author(s):  
Xiang Zhang ◽  
Chunsheng Shi ◽  
Enzuo Liu ◽  
Jiajun Li ◽  
Naiqin Zhao ◽  
...  

Nitrogen-doped graphene network supported graphene shell encapsulated Cu nanoparticles for surface-enhanced Raman scattering were constructed by in situ chemical vapor deposition.


The Analyst ◽  
2021 ◽  
Author(s):  
Yanjia Jiang ◽  
Huimin Sun ◽  
Chenjie Gu ◽  
Yongling Zhang ◽  
Tao Jiang

There is a growing interest in developing a multifunctional surface-enhanced Raman scattering (SERS) substrate to deal with the challenge of the pretreatment-free detection and degradation of hazardous molecules in organic...


Sign in / Sign up

Export Citation Format

Share Document