Suppressing vanadium dissolution of V2O5via in situ polyethylene glycol intercalation towards ultralong lifetime room/low-temperature zinc-ion batteries

Nanoscale ◽  
2021 ◽  
Author(s):  
Chunfa Lin ◽  
Fenqiang Qi ◽  
Huilong Dong ◽  
Xiao Li ◽  
Chunping Shen ◽  
...  

The polyethylene glycol pre-intercalated vanadium oxide composites deliver superior zinc-ion storage properties with high specific capacity, stable cycling capability, excellent rate and low-temperature performance.

Author(s):  
Jianwei Li ◽  
Ningyun Hong ◽  
Ningjing Luo ◽  
Haobo Dong ◽  
Liqun Kang ◽  
...  

AbstractVanadium bronzes have been well-demonstrated as promising cathode materials for aqueous zinc-ion batteries. However, conventional single-ion pre-intercalated V2O5 nearly reached its energy/power ceiling due to the nature of micro/electronic structures and unfavourable phase transition during Zn2+ storage processes. Here, a simple and universal in-situ anodic oxidation method of quasi-layered CaV4O9 in a tailored electrolyte was developed to introduce dual ions (Ca2+ and Zn2+) into bilayer δ-V2O5 frameworks forming crystallographic ultra-thin vanadium bronzes, Ca0.12Zn0.12V2O5·nH2O. The materials deliver transcendental maximum energy and power densities of 366 W h kg−1 (478 mA h g−1 @ 0.2 A g−1) and 6627 W kg−1 (245 mA h g−1 @ 10 A g−1), respectively, and the long cycling stability with a high specific capacity up to 205 mA h g−1 after 3000 cycles at 10 A g−1. The synergistic contributions of dual ions and Ca2+ electrolyte additives on battery performances were systematically investigated by multiple in-/ex-situ characterisations to reveal reversible structural/chemical evolutions and enhanced electrochemical kinetics, highlighting the significance of electrolyte-governed conversion reaction process. Through the computational approach, reinforced “pillar” effects, charge screening effects and regulated electronic structures derived from pre-intercalated dual ions were elucidated for contributing to boosted charge storage properties.


2015 ◽  
Vol 3 (22) ◽  
pp. 11857-11862 ◽  
Author(s):  
Yuan Liu ◽  
Minqiang Zhu ◽  
Di Chen

A sheet-like MoSe2/C composite-based Li-ion battery exhibits an excellent Li storage performance, including a high specific capacity, good cyclability and high rate capability.


2021 ◽  
pp. 2103070
Author(s):  
Zhengchunyu Zhang ◽  
Baojuan Xi ◽  
Xiao Wang ◽  
Xiaojian Ma ◽  
Weihua Chen ◽  
...  
Keyword(s):  
Zinc Ion ◽  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Quan Zong ◽  
Wei Du ◽  
Chaofeng Liu ◽  
Hui Yang ◽  
Qilong Zhang ◽  
...  

AbstractAmmonium vanadate with bronze structure (NH4V4O10) is a promising cathode material for zinc-ion batteries due to its high specific capacity and low cost. However, the extraction of $${\text{NH}}_{{4}}^{ + }$$ NH 4 + at a high voltage during charge/discharge processes leads to irreversible reaction and structure degradation. In this work, partial $${\text{NH}}_{{4}}^{ + }$$ NH 4 + ions were pre-removed from NH4V4O10 through heat treatment; NH4V4O10 nanosheets were directly grown on carbon cloth through hydrothermal method. Deficient NH4V4O10 (denoted as NVO), with enlarged interlayer spacing, facilitated fast zinc ions transport and high storage capacity and ensured the highly reversible electrochemical reaction and the good stability of layered structure. The NVO nanosheets delivered a high specific capacity of 457 mAh g−1 at a current density of 100 mA g−1 and a capacity retention of 81% over 1000 cycles at 2 A g−1. The initial Coulombic efficiency of NVO could reach up to 97% compared to 85% of NH4V4O10 and maintain almost 100% during cycling, indicating the high reaction reversibility in NVO electrode.


2021 ◽  
Author(s):  
Yalong Shao ◽  
Jing Zeng ◽  
Junjie Li ◽  
Honglin Ren ◽  
Zhonghua Zhang ◽  
...  

2013 ◽  
Vol 1 (31) ◽  
pp. 8897 ◽  
Author(s):  
Chao Wang ◽  
Jing Ju ◽  
Yanquan Yang ◽  
Yufeng Tang ◽  
Jianhua Lin ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingmeng Zhang ◽  
Henan Li ◽  
Shaozhuan Huang ◽  
Shuang Fan ◽  
Lingna Sun ◽  
...  

AbstractMgSO4 is chosen as an additive to address the capacity fading issue in the rechargeable zinc-ion battery system of MgxV2O5·nH2O//ZnSO4//zinc. Electrolytes with different concentration ratios of ZnSO4 and MgSO4 are investigated. The batteries measured in the 1 M ZnSO4−1 M MgSO4 electrolyte outplay other competitors, which deliver a high specific capacity of 374 mAh g−1 at a current density of 100 mA g−1 and exhibit a competitive rate performance with the reversible capacity of 175 mAh g−1 at 5 A g−1. This study provides a promising route to improve the performance of vanadium-based cathodes for aqueous zinc-ion batteries with electrolyte optimization in cost-effective electrolytes.


Sign in / Sign up

Export Citation Format

Share Document