scholarly journals In-situ electrochemical modification of pre-intercalated vanadium bronze cathodes for aqueous zinc-ion batteries

Author(s):  
Jianwei Li ◽  
Ningyun Hong ◽  
Ningjing Luo ◽  
Haobo Dong ◽  
Liqun Kang ◽  
...  

AbstractVanadium bronzes have been well-demonstrated as promising cathode materials for aqueous zinc-ion batteries. However, conventional single-ion pre-intercalated V2O5 nearly reached its energy/power ceiling due to the nature of micro/electronic structures and unfavourable phase transition during Zn2+ storage processes. Here, a simple and universal in-situ anodic oxidation method of quasi-layered CaV4O9 in a tailored electrolyte was developed to introduce dual ions (Ca2+ and Zn2+) into bilayer δ-V2O5 frameworks forming crystallographic ultra-thin vanadium bronzes, Ca0.12Zn0.12V2O5·nH2O. The materials deliver transcendental maximum energy and power densities of 366 W h kg−1 (478 mA h g−1 @ 0.2 A g−1) and 6627 W kg−1 (245 mA h g−1 @ 10 A g−1), respectively, and the long cycling stability with a high specific capacity up to 205 mA h g−1 after 3000 cycles at 10 A g−1. The synergistic contributions of dual ions and Ca2+ electrolyte additives on battery performances were systematically investigated by multiple in-/ex-situ characterisations to reveal reversible structural/chemical evolutions and enhanced electrochemical kinetics, highlighting the significance of electrolyte-governed conversion reaction process. Through the computational approach, reinforced “pillar” effects, charge screening effects and regulated electronic structures derived from pre-intercalated dual ions were elucidated for contributing to boosted charge storage properties.

Nanoscale ◽  
2021 ◽  
Author(s):  
Chunfa Lin ◽  
Fenqiang Qi ◽  
Huilong Dong ◽  
Xiao Li ◽  
Chunping Shen ◽  
...  

The polyethylene glycol pre-intercalated vanadium oxide composites deliver superior zinc-ion storage properties with high specific capacity, stable cycling capability, excellent rate and low-temperature performance.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Quan Zong ◽  
Wei Du ◽  
Chaofeng Liu ◽  
Hui Yang ◽  
Qilong Zhang ◽  
...  

AbstractAmmonium vanadate with bronze structure (NH4V4O10) is a promising cathode material for zinc-ion batteries due to its high specific capacity and low cost. However, the extraction of $${\text{NH}}_{{4}}^{ + }$$ NH 4 + at a high voltage during charge/discharge processes leads to irreversible reaction and structure degradation. In this work, partial $${\text{NH}}_{{4}}^{ + }$$ NH 4 + ions were pre-removed from NH4V4O10 through heat treatment; NH4V4O10 nanosheets were directly grown on carbon cloth through hydrothermal method. Deficient NH4V4O10 (denoted as NVO), with enlarged interlayer spacing, facilitated fast zinc ions transport and high storage capacity and ensured the highly reversible electrochemical reaction and the good stability of layered structure. The NVO nanosheets delivered a high specific capacity of 457 mAh g−1 at a current density of 100 mA g−1 and a capacity retention of 81% over 1000 cycles at 2 A g−1. The initial Coulombic efficiency of NVO could reach up to 97% compared to 85% of NH4V4O10 and maintain almost 100% during cycling, indicating the high reaction reversibility in NVO electrode.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingmeng Zhang ◽  
Henan Li ◽  
Shaozhuan Huang ◽  
Shuang Fan ◽  
Lingna Sun ◽  
...  

AbstractMgSO4 is chosen as an additive to address the capacity fading issue in the rechargeable zinc-ion battery system of MgxV2O5·nH2O//ZnSO4//zinc. Electrolytes with different concentration ratios of ZnSO4 and MgSO4 are investigated. The batteries measured in the 1 M ZnSO4−1 M MgSO4 electrolyte outplay other competitors, which deliver a high specific capacity of 374 mAh g−1 at a current density of 100 mA g−1 and exhibit a competitive rate performance with the reversible capacity of 175 mAh g−1 at 5 A g−1. This study provides a promising route to improve the performance of vanadium-based cathodes for aqueous zinc-ion batteries with electrolyte optimization in cost-effective electrolytes.


2020 ◽  
Vol 10 (10) ◽  
pp. 1697-1703
Author(s):  
Zebin Wu ◽  
Wei Zhou ◽  
Zhen Liu ◽  
Yijie Zhou ◽  
Guilin Zeng ◽  
...  

Flower-like C@V2O5 microspheres with high specific capacity were synthesized by a facile hydrothermal method. The microstructure, specific capacity and electrochemical properties of C@V2O5 microspheres were studied. Results showed that the C@V2O5 microspheres with a diameter of ∼3 m are covered over by V2O5 nanosheets, and therefore have a large surface area which is almost 5 times higher than that of pure V2O5 powders. Moreover, the initial specific capacity of C@V2O5 microsphere is as high as 247.42 mAh · g–1, and after 100 cycles, the capacity retention rate is still 99.4%. Compared with pure V2O5, flower-like C@V2O5 microspheres show higher discharge specific capacity, better rate performance and more stable cycling performance.


RSC Advances ◽  
2019 ◽  
Vol 9 (36) ◽  
pp. 20549-20556 ◽  
Author(s):  
Fang Hu ◽  
Di Xie ◽  
Fuhan Cui ◽  
Dongxu Zhang ◽  
Guihong Song

Compared to the electrochemical performance for LIBs and NIBs, NaV3O8 nanobelts electrode for ZIBs shows excellent electrochemical performance, including high specific capacity of 421 mA h g−1 at 100 mA g−1, good rate performance and cycle performance.


2016 ◽  
Vol 52 (13) ◽  
pp. 2713-2716 ◽  
Author(s):  
Feilong Qiu ◽  
Ping He ◽  
Jie Jiang ◽  
Xueping Zhang ◽  
Shengfu Tong ◽  
...  

Ordered mesoporous TiC–C (OMTC) composites were prepared and served as catalysts for nonaqueous Li–O2 batteries. The OMTC cathodes showed high specific capacity, low overpotential and good cyclability. Furthermore, the discharge and charge processes were investigated extensively by XRD, XPS and in situ GC-MS methods.


2019 ◽  
Vol 10 (5) ◽  
pp. 1591-1601 ◽  
Author(s):  
Yongpan Gu ◽  
Weimin Du ◽  
Yusuf Darrat ◽  
Mahdi Saleh ◽  
Yuxin Huang ◽  
...  

2015 ◽  
Vol 17 (40) ◽  
pp. 27109-27117 ◽  
Author(s):  
Beibei Wang ◽  
Gang Wang ◽  
Zhengyuan Lv ◽  
Hui Wang

In this article, we demonstrate a simple solvothermal method towards in situ growth of hierarchical CoFe2O4 nanoclusters on graphene aerogels (GAs). The CoFe2O4/GAs electrode exhibits high specific capacity, excellent cycling stability and superior rate capabilities in both half and full cells.


2018 ◽  
Vol 6 (5) ◽  
pp. 2139-2147 ◽  
Author(s):  
Dan Zhou ◽  
Li-Zhen Fan

A novel Co2P-3D PNC composite with Co2P NPs encapsulated in 3D porous N-doped carbon nanosheet networks was synthesized by a cobalt nitrate-induced PVP-blowing method combined with an in situ phosphidation process. The resultant Co2P-3D PNC anode delivers high specific capacity, enhanced rate capability, and improved cycling stability.


Author(s):  
Chandrani Nayak ◽  
Abharana N ◽  
Brindaban Modak ◽  
Kruti K Halankar ◽  
Shambhu Nath Jha ◽  
...  

Fe3O4 is a promising conversion electrode material for Li ion batteries with high specific capacity. However, it suffers from capacity fading with cycling which inhibits the performance of these electrodes....


Sign in / Sign up

Export Citation Format

Share Document